COPY

### **DRAFT**

### UNIT-SPECIFIC TECHNICAL MEMORANDUM: X-314 SEPTIC SYSTEM PRATT & WHITNEY, EAST HARTFORD, CT\_\_\_\_\_

AREA: North Klondike

SUB-AREA: X-312/X-314

**ENVIRONMENTAL UNIT:** X-314 Septic System

RCRA RECORDS CENTER

FACILITY

I.D. NO. CTD990672081

FILE LOC. R-S

OTHER DMS #2665

Location: In the North Klondike Area, this unit is located on the east side of Perimeter Road and north of the Tie-Down Area (Drawing 1).

**Description:** The former septic system consisted of a steel septic tank, approximately 1,000 gallons in size, and a single line leaching field. The septic system serviced the former locker room building for the X-314 Test Stand. Presently, only the foundation of the former building remains. The septic system was located northeast of the former building. The location is shown on Drawing 1. Based on facility maps, this building was used for lockers, a bathroom, and storage. The septic tank had been abandoned in place and was filled with a mixture of crushed stone and soil over a thin layer of sludge in the bottom. As of April 1997, the septic tank has been removed.

**Dates of Operation:** Approximately 1957 to early 1990's. The X-312 and X-314 Test Stands were built in 1957 and remained in place until they were demolished in the early 1990's.

**Processes:** Domestic sewage from the former X-314 building, also known as the "Locker Room Building" to the septic system.

Aerial Photographs: Large-scale photographs for 1965, 1970, and 1975 were obtained from Keystone Aerial Surveys, Inc. Three smaller aerial photographs were obtained from the Pratt and Whitney (P&W) Photographic Services Department. All of these aerial photographs reveal that the X-314 Test Stand was an existing structure in the North Klondike as early as 1965. It is assumed that the dates of operation of the septic system would have paralleled the existence of the building.

Specific Contaminants of Concern: The specific contaminants are unknown. In order to be as comprehensive as possible in the investigation that was conducted, the following constituent groups were analyzed for: volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, nickel, and zinc), total petroleum hydrocarbons (TPH), and polychlorinated biphenyls (PCBs).

**Potential Release Mechanism:** Impacts to soils and groundwater associated with potential leaks from the septic tank, and seepage from the leaching field.

#### **INVESTIGATION AND REMEDIATION ACTIVITIES:**

Due to the potential for a release associated with the septic system, several subsurface investigations were performed to determine the degree and extent of potential soil contamination in the vicinity of the septic system. These investigations were performed in July 1993, August



1995, August 1996, and November 1996. Prior to 1993, no investigation of this unit had reportedly been performed. The septic tank was removed in April 1997. The investigations and the removal are discussed below in chronological order.

#### July 1993 Investigation (Metcalf & Eddy, Inc.):

**Description:** In June 1993, a single soil sample, NK-SS-14, was collected in the vicinity of the septic tank by Metcalf & Eddy, Inc. (M&E) (M&E, 1993). The sampling location was reported as being chosen based on being close to a suspected underground storage tank grave and near pipe fittings that had a likelihood of leaking. The sample location is shown on Drawing 1. This sample was analyzed for VOCs, SVOCs, metals (plus beryllium), and PCBs. A summary of the samples collected and analyses performed is included in Table 1.

Investigation Results: Concentrations of constituents detected in soil samples collected for this unit are presented in Table 2. A complete summary of soil analytical results with detection limits is presented in Table 3. Detected concentrations at each soil sampling location are shown on Drawing 1. VOCs, SVOCs, and PCBs were not detected in this soil sample. Metals were detected in the soil sample submitted for analysis. These metals include arsenic, barium, beryllium, chromium, lead, nickel, and zinc.

Data Evaluation and Conclusions: The data were compared against the default numeric criteria included in the Connecticut Remediation Standard Regulation (RSR) and the site-wide background soil concentrations for various metals (Fuss & O'Neill, 1994). For a more detailed discussion of background concentrations of metals in soil refer to *Technical Memorandum (TM)* 4, Background Soil Sampling and Analysis. Criteria are established in the RSR based on exposure pathways for various environmental media, including soil and groundwater. The evaluation of the soils data is based on a comparison to the default numeric residential direct exposure criteria (RDEC), the industrial/commercial direct exposure criteria (IDEC), and the GB pollutant mobility criteria (GBPMC) included in the RSR.

Based on the analytical results of the soil sample, there is no evidence that hazardous constituents may have been released in the area of the sample. The concentrations of the metals detected in this sample are typical of site-wide background concentrations and are not indicative of a release from this unit. For metals detected in the soil sample, no exceedances of the RDEC or the IDEC were noted.

Although no exceedances were identified for the above soil sample, additional soils and groundwater data were necessary to determine if hazardous constituents may have been released to the septic system. Since the one soil sample was not collected in the vicinity of the leaching field or from within the septic tank, additional investigation in the vicinity of the unit was warranted.

#### August 1995 Investigation (Loureiro Engineering Associates, P.C.):

**Description:** On August 2, 1995, the septic tank was located with an excavator by Loureiro Engineering Associates, P.C. (LEA). The location of the septic tank is shown on Drawing 1. LEA used an excavator to expose the top of the septic tank. A sludge sample, NK-SL-04, was



collected from inside of the septic tank. This sludge sample was submitted to Averill Environmental Laboratory, Inc. (AEL) and analyzed for the presence of VOCs, metals, and PCBs.

In addition, one soil boring, NK-SB-04 was advanced into the approximate location of the leaching field on August 8,1995. The sampling location is shown on Drawing 1. Soil samples were collected from the boring in continuous 2-foot intervals to 10 feet. The depth of 10 feet was selected to ensure that the boring was advanced into the water table.

A total of five soil samples from the soil boring were submitted to the LEA Analytical Laboratory and screened for the presence of target VOCs, including benzene (BZ), ethylbenzene (EBZ), tetrachloroethylene (PCE), toluene (TL), 1,1,1-trichloroethane (TCA), trichloroethylene (TCE), and xylenes (XYL). Based on visual, olfactory, or instrument evidence, and with consideration of the potential release mechanism, one sample from the soil boring was submitted to AEL and analyzed for the presence of VOCs, metals, and PCBs. A summary of the samples collected and analyses performed is included in Table 1.

**Investigation Results:** Based on the boring log, groundwater was encountered at approximately 8 feet and varved clay was not encountered at the investigated depths. No visual or olfactory evidence of contamination was noted on the boring logs.

Concentrations of constituents detected in the soil and septic tank sludge sample are presented in Table 2 and Table 6, respectively. A complete summary of soil and sludge sample analytical results with detection limits is presented in Table 3 and Table 7, respectively. Detected concentrations are shown on Drawing 1. Two VOCs, chloroethane and XYL, were detected in the sludge sample, while no VOCs were detected in the soil sample. Chloroethane and XYL were detected at concentrations of 270 micrograms per kilogram ( $\mu g/kg$ ) and 23  $\mu g/kg$ , respectively.

The only metal that was detected in the sludge sample was barium, while the metals detected in the soil sample included arsenic, barium, and chromium. PCBs were not detected in either the sludge or the soil sample.

**Data Evaluation and Conclusions**: The data were compared against the default numeric criteria included in the RSR and the site-wide background soil concentrations for various metals. The concentrations of the metals detected in the soil samples are typical of site-wide background concentrations and are not indicative of a release from this unit. For the metals detected in soil, no exceedances of the RDEC or the IDEC were noted.

Based on the presence of VOCs in the septic system sludge, there is evidence that hazardous constituents may have been released to the septic system. Nevertheless, the sample collected from the septic tank sludge should not be compared to the RSR, since there are no criteria for sludge samples. However, the constituents detected in the sludge sample are below the RDEC and the IDEC for soil. The degree and extent of potential contamination in the vicinity of this unit has not been adequately characterized and further investigations are necessary.



#### August 1996 Investigation (LEA):

**Description:** On August 12 and 13, 1996, four soil borings, NK-SB-43 through NK-SB-46, were advanced in the assumed area of the leaching field. The sampling locations are shown on Drawing 1. Soil samples were collected from the borings in continuous 2-foot intervals to 14 feet, with a 1-foot interval from 14 to 15 feet. The depth of 15 feet was selected to ensure that sufficient data was collected for comparisons against the direct exposure criteria in the RSR.

A total of thirty-three soil samples were submitted to the LEA Analytical Laboratory and screened for the presence of target VOCs. Based on visual, olfactory, or instrument evidence, and with consideration of the potential release mechanism, two samples from each soil boring were submitted to AEL for analysis. The samples were analyzed for the presence of VOCs, SVOCs, metals, and TPH.

In addition, a groundwater sample was also collected from boring NK-SB-46, using Geoprobe<sup>®</sup> screenpoint groundwater sampling techniques. The groundwater sample was collected at a depth of 9.5 to 10.5 feet below the ground surface. The groundwater sample was submitted to the LEA Analytical Laboratory for analysis for the presence of VOCs, and AEL for VOCs, metals, and TPH. A summary of the samples collected and analyses performed is included in Table 1.

**Investigation Results:** Based on the boring logs, groundwater was encountered at approximately 10 feet in boring NK-SB-46 and at 9.5 feet in the remaining three borings. Varved clay was encountered at 15 feet in all four borings. No visual or olfactory evidence of contamination was noted on the boring logs. Concentrations of constituents detected in soil samples collected for this unit are presented in Table 2. A complete summary of soil analytical results with detection limits is presented in Table 3. Detected concentrations are shown on Drawing 1. VOCs and SVOCs were not detected in any of the soil samples submitted for analysis.

TPH was detected in one boring, NK-SB-44 at a depth of 0 to 2 feet, at a concentration of 328 milligrams per kilogram (mg/kg). One or more metals were detected in each of the eight soil samples submitted for analysis. These metals include arsenic, barium, chromium, copper, and zinc.

Concentrations of constituents detected in the groundwater sample collected for this unit are presented in Table 4. A complete summary of groundwater analytical results with detection limits is presented in Table 5. Detected concentrations in groundwater are shown on Drawing 2. VOCs and TPH were not detected in the groundwater samples. Several metals were detected in the groundwater sample, including barium, nickel, and zinc.

**Data Evaluation and Conclusions:** The data were compared against the default numeric criteria included in the RSR and the site-wide background soil concentrations for various metals. The concentrations of the metals detected in the soil samples are typical of site-wide background concentrations and are not indicative of a release from this unit. For the metals detected in soil, no exceedances of the RDEC or the IDEC were noted.

The evaluation of the groundwater data was based on a comparison to the default numeric residential volatilization criteria (RVC), the industrial/commercial volatilization criteria (IVC),



and the surface water protection criteria (SWPC) included in the RSR. For the metals detected in groundwater, no exceedances of the surface water protection criterion (SWPC) were noted.

For the TPH detected in soil, no exceedances of the RDEC, IDEC, or the GBPMC were noted. Based on the presence of TPH in boring NK-SB-44 at a depth of 0 to 2 feet, there is evidence that a release of petroleum may have occurred from a source other than the septic system. Given the location of the boring and the depth where TPH was detected, the septic system does not appear to be the source of the TPH. The source of the TPH is not known. The degree and extent of the release has not been adequately characterized in the vicinity of this boring.

#### November 1996 Investigation (LEA):

**Description:** On November 13, 1996, four soil borings, NK-SB-219 through NK-SB-222, were advanced to a depth of 6 feet in vicinity of boring NK-SB-44 where TPH had been detected at 0 to 2 feet. The sampling locations are shown on Drawing 1. Soil samples were collected from each of the borings in continuous 2-foot intervals to 6 feet. The depth of 6 feet was selected to ensure that sufficient data were collected for adequate vertical characterization of the potential TPH release.

A total of thirteen soil samples were submitted to the LEA Analytical Laboratory and screened for the presence of target VOCs. The soil samples from the 0 to 2 foot and the 2 to 4 foot intervals in each boring were submitted to AEL and analyzed for TPH. A summary of the samples collected and analyses performed is included in Table 1.

**Investigation Results:** No visual or olfactory evidence of contamination was noted on the boring logs. Neither groundwater or varved clay were encountered in the borings.

Concentrations of constituents detected in soil samples collected for this unit are presented in Table 2. A complete summary of soil analytical results with detection limits is presented in Table 3. Detected concentrations are shown on Drawing 1. VOCs were not detected in any of the soil samples by the LEA Analytical Laboratory. TPH was detected in one boring, NK-SB-221 at a depth of 0 to 2 feet, at a concentration of 71.5 mg/kg.

**Data Evaluation and Conclusions:** The data were compared against the default numeric criteria included in the RSR and the site-wide background soil concentrations for various metals. For the TPH detected in soil, no exceedances of the RDEC, IDEC, or the GBPMC were noted. Based on the presence of TPH in boring NK-SB-221 at a depth of 0 to 2 feet and the previous TPH detection at NK-SB-44, there is evidence that a release of petroleum may have occurred from a source other than the septic system.

Given the location of the boring and the depth where TPH was detected, the septic system does not appear to be the source for the TPH. The source for the TPH is not known. The degree and extent of the TPH release has been adequately characterized and no additional investigation or remediation is warranted for the TPH detections. The septic tank was scheduled for removal as part of the Septic System Removal Project to comply with the local Health Department regulations.



#### April 1997 Remediation (Environmental Remediation, Inc.):

Description: As part of the Septic System Removal Project conducted in the Airport/Klondike Area, the septic tank for the X-314 Septic System was removed on April 11, 1997 by Environmental Remediation, Inc. (ERI). The soil excavated during the tank removal was disposed of off the site as a non-hazardous waste. The excavation for the septic tank, identified as test pit NK-TP-14, was approximately 13 feet by 13 feet by 7 feet deep. The location of the test pit is shown on Drawing 1. A total of five soil samples, including a duplicate soil sample, were collected from each of the four excavation sidewalls and the testpit bottom on April 11, 1997. These soil samples were submitted to Environmental Science Services Laboratory (ESS) for analysis. Due to data validation issues, analytical results from ESS were deemed unusable for the Airport/Klondike Project. Subsequent to these concerns, ESS analytical results have not be considered within this Unit-Specific Technical Memorandum.

The four confirmational sidewall samples and a bottom sample were recollected on June 9, 1997. These soil samples were submitted to Quanterra Inc. (QNT) for analysis of VOCs, metals, and TPH. A summary of the samples collected and analyses performed are included in Table 1. The sampling locations are shown on Drawing 1.

**Investigation Results:** No visual or olfactory evidence of contamination was noted in the field paperwork. Concentrations of constituents detected in soil samples collected for this unit are presented in Table 2. A complete summary of soil analytical results with detection limits is presented in Table 3. Detected concentrations at each sampling location are shown on Drawing 1.

VOCs and TPH were not detected in the samples submitted to QNT for analysis. One or more of the metals analyzed were detected in each of the samples submitted for analysis. These metals include barium, chromium, lead, nickel, and zinc.

Data Evaluation and Conclusions: The data were compared against the default numeric criteria included in the RSR and the site-wide background soil concentrations for various metals. The concentrations of the metals detected in the soil samples are typical of background concentrations and are not indicative of a release from this unit. For the metals detected in soil, no exceedances of the RDEC or the IDEC were noted.

VOCs and TPH were not detected in the confirmational soil samples collected and analyzed for this unit. Based on the results of the laboratory analyses of confirmational soil samples collected and analyzed for this unit, there is no evidence that a release occurred from the septic tank. As a result, the area has been adequately characterized and no further action is warranted for this unit.

#### **REFERENCES:**

Fuss & O'Neill, Inc., June 1995, Soil Sampling Background Areas – North Klondike, prepared for Pratt & Whitney.

Keystone Aerial Surveys, Inc. 1965, Aerial Photo of Rentschler Airport and Surrounding Areas, East Hartford, CT.



Keystone Aerial Surveys, Inc. 1970, Aerial Photo of Rentschler Airport and Surrounding Areas, East Hartford, CT.

Keystone Aerial Surveys, Inc. 1975, Aerial Photo of Rentschler Airport and Surrounding Areas, East Hartford, CT.

Metcalf & Eddy, Inc. July 1993, Draft Report - Klondike Area Site Investigation, UTC / Pratt & Whitney Facility, East Hartford, CT, prepared for Pratt & Whitney.

P&W Photographic Services Department, 1977, Aerial Photograph, Negative Number 77-445-0054-AC, Pratt & Whitney, East Hartford, CT.

P&W Photographic Services Department, 1983, *Aerial Photograph, Negative Number 83C1793-042*, Pratt & Whitney, East Hartford, CT.

P&W Photographic Services Department, 1983, Aerial Photograph, Negative Number 83C1793-041, Pratt & Whitney, East Hartford, CT.



### Table 1 SUMMARY OF SAMPLING AND ANALYTICAL INFORMATION P&W East Hartford: X-314 Septic System Area

Page 1 of 2

|             | Sam         | ple Information |                                                  |         |       | Analysis Information |                   |                       |            |            |      |        |              |                                       |  |  |
|-------------|-------------|-----------------|--------------------------------------------------|---------|-------|----------------------|-------------------|-----------------------|------------|------------|------|--------|--------------|---------------------------------------|--|--|
| Location ID | Sample ID   | Sample Date     | From (ft)                                        | To (ft) | Class | Portable GC          | Volatile Organics | Semivolatile Organics | Herbicides | Pesticides | PCBs | Metals | Extraction   | Miscellaneous                         |  |  |
| NK-SB-04    | 1006262     | 8/ 8/95         | 0                                                | 2       | SB    | x                    |                   |                       |            |            |      |        | <del> </del> |                                       |  |  |
| NK-SB-04    | 1006263     | 8/ 8/95         | 2                                                | 4       | SB    | x                    | x                 |                       |            |            | х    | X      |              | -                                     |  |  |
| NK-SB-04    | 1006264     | 8/ 8/95         | 4                                                | 6       | SB    | x                    |                   |                       |            |            |      |        |              |                                       |  |  |
| NK-SB-04    | 1006265     | 8/ 8/95         | 6                                                | 8       | SB    | х                    |                   |                       |            |            |      |        |              |                                       |  |  |
| NK-SB-04    | 1006482     | 8/ 8/95         | 8                                                | 10      | SB    | х                    |                   |                       |            |            |      |        |              |                                       |  |  |
| NK-SB-219   | 1021748     | 11/13/96        | 0                                                | 2       | SB    | x                    |                   |                       |            | ·          |      |        |              | x                                     |  |  |
| NK-SB-219   | 1021749     | 11/13/96        | 2                                                | 4       | SB    | х                    |                   |                       |            |            |      |        |              | х                                     |  |  |
| NK-SB-219   | 1021750     | 11/13/96        | 4                                                | 6       | SB    | х                    |                   |                       |            |            |      |        |              |                                       |  |  |
| NK-SB-220   | 1021751     | 11/13/96        | 0                                                | 2       | SB    | x                    |                   |                       |            |            |      |        |              | х                                     |  |  |
| NK-SB-220   | 1021752     | 11/13/96        | 2                                                | 4       | SB    | х                    |                   |                       |            |            |      |        |              | x                                     |  |  |
| NK-SB-220   | 1021753     | 11/13/96        | 4                                                | 6       | SB    | х                    |                   |                       |            |            |      |        |              |                                       |  |  |
| NK-SB-221   | 1021754     | 11/13/96        | 0                                                | 2       | SB    | х                    |                   |                       |            |            |      |        |              | X                                     |  |  |
| NK-SB-221   | 1021755     | 11/13/96        | 2                                                | 4       | SB    | x                    |                   |                       |            |            |      |        |              | х                                     |  |  |
| NK-SB-221   | 1021756     | 11/13/96        | 2                                                | 4       | SB    | х                    |                   |                       |            |            |      |        |              | x                                     |  |  |
| NK-SB-221   | 1021757     | 11/13/96        | 4                                                | 6       | SB    | х                    |                   |                       |            |            |      |        |              |                                       |  |  |
| NK-SB-222   | 1021758     | 11/13/96        | 0                                                | 2       | SB    | x                    |                   |                       |            |            |      |        |              | x                                     |  |  |
| NK-SB-222   | 1021759     | 11/13/96        | 2                                                | 4       | SB    | x                    |                   |                       |            |            |      |        |              | х                                     |  |  |
| NK-SB-222   | 1021760     | 11/13/96        | 4                                                | 6       | SB    | x                    |                   |                       |            |            |      |        |              |                                       |  |  |
| NK-SB-43    | 1017115     | 8/12/96         | 0                                                | 2       | SB    | x                    | х                 | x                     |            |            |      | X      |              | х                                     |  |  |
| NK-SB-43    | 1017116     | 8/12/96         | 2                                                | 4       | SB    | x                    |                   |                       |            |            |      |        |              |                                       |  |  |
| NK-SB-43    | 1017117     | 8/12/96         | 4                                                | 6       | SB    | x                    |                   |                       |            |            |      |        |              |                                       |  |  |
| NK-SB-43    | 1017118     | 8/12/96         | 4                                                | 6       | ŞB    | x                    |                   |                       |            |            |      |        |              |                                       |  |  |
| NK-SB-43    | 1017119     | 8/12/96         | 6                                                | 8       | SB    | х                    | x                 | x                     |            |            |      | X      |              | х                                     |  |  |
| NK-SB-43    | 1017120     | 8/12/96         | 8                                                | 10      | SB    | x                    |                   |                       |            |            |      |        |              | · · · · · · · · · · · · · · · · · · · |  |  |
| NK-SB-43    | 1017121     | 8/12/96         | 10                                               | 12      | SB    | х                    |                   |                       |            |            |      |        |              |                                       |  |  |
| NK-SB-43    | 1017122     | 8/12/96         | 12                                               | 14      | SB    | x                    |                   |                       |            |            |      |        |              | <del></del>                           |  |  |
| NK-SB-43    | 1017123     | 8/12/96         | 14                                               | 15      | SB    | x                    |                   |                       |            |            |      |        |              |                                       |  |  |
| NK-SB-44    | 1017124     | 8/12/96         | 0                                                | 2       | SB    | х                    | x                 | x                     |            |            |      | X      |              | х                                     |  |  |
| NK-SB-44    | 1017125     | 8/12/96         | 2                                                | 4       | SB    | x                    |                   |                       |            |            |      |        | <u> </u>     |                                       |  |  |
| NK-SB-44    | 1017126     | 8/12/96         | 4                                                | 6       | SB    | ×                    |                   |                       |            |            |      |        |              |                                       |  |  |
| NK-SB-44    | 1017127     | 8/12/96         | 6                                                | 8       | SB    | x                    | x                 | x                     |            |            |      | X      | <u> </u>     | x                                     |  |  |
|             | <del></del> | <del>-  </del>  | <del>                                     </del> |         | +     | <del></del>          | <del> </del>      |                       |            |            |      |        | <del> </del> | <del> </del>                          |  |  |

Notes: 1. Legend: X - Analysed; at least one analyte over the detection limit; x - Analysed, no analytes in group over the detection limit



<sup>2.</sup> Printed on 09/24/98

### Table 1 SUMMARY OF SAMPLING AND ANALYTICAL INFORMATION P&W East Hartford: X-314 Septic System Area

Page 2 of 2

|             | Sampl       | e Information | 1         |         | Analysis Information |             |                   |                       |            |            |      |        |            |               |
|-------------|-------------|---------------|-----------|---------|----------------------|-------------|-------------------|-----------------------|------------|------------|------|--------|------------|---------------|
| Location ID | Sample ID   | Sample Date   | From (ft) | To (ft) | Class                | Portable GC | Volatile Organics | Semivolatile Organics | Herbicides | Pesticides | PCBs | Metals | Extraction | Miscellaneous |
| NK-SB-44    | 1017128     | 8/12/96       | 8         | 10      | SB                   | х           |                   |                       |            |            |      |        |            |               |
| NK-SB-44    | 1017129     | 8/12/96       | 10        | 12      | SB                   | x           |                   |                       |            |            |      |        |            |               |
| NK-SB-44    | 1017130     | 8/12/96       | 12        | 14      | SB                   | х           |                   |                       |            |            |      |        |            |               |
| NK-SB-44    | 1017131     | 8/12/96       | 14        | 15      | SB                   | х           |                   |                       |            |            |      |        |            | -             |
| NK-SB-45    | 1017132     | 8/12/96       | 0         | 2       | SB                   | x           | х                 | х                     |            |            |      | Х      |            | x             |
| NK-SB-45    | 1017133     | 8/12/96       | 2         | 4       | SB                   | х           |                   |                       |            |            |      |        |            |               |
| NK-SB-45    | 1017134     | 8/12/96       | 4         | 6       | SB                   | х           |                   |                       |            |            |      |        |            |               |
| NK-SB-45    | 1017135     | 8/12/96       | 6         | 8       | SB                   | х           | x                 | х                     |            |            |      | X      |            | x             |
| NK-SB-45    | 1017136     | 8/12/96       |           | 10      | SB                   | х           |                   |                       |            |            |      |        |            |               |
| NK-SB-45    | 1017137     | 8/12/96       |           | 12      | SB                   | х           |                   |                       |            |            |      |        |            |               |
| NK-SB-45    | 1017138     | 8/12/96       | 1         | 14      | SB                   | х           |                   |                       |            |            |      |        |            |               |
| NK-SB-45    | 1017139     | 8/12/96       | 14        | 15      | SB                   | х           |                   |                       |            |            |      |        |            |               |
| NK-SB-46    | 1017141     | 8/13/96       | 0         | 2       | SB                   | х           | х                 | х                     |            |            |      | X      |            | x             |
| NK-SB-46    | 1017142     | 8/13/96       | 2         | 4       | SB                   | х           |                   |                       |            |            |      |        |            |               |
| NK-SB-46    | 1017143     | 8/13/96       | 4         | 6       | SB                   | х           |                   |                       |            |            |      |        |            |               |
| NK-SB-46    | 1017144     | 8/13/96       | 6         | 8       | SB                   | х           | х                 | х                     |            |            |      | X      |            | x             |
| NK-SB-46    | 1017145     | 8/13/96       | 8         | 10      | SB                   | х           |                   |                       |            |            |      |        |            |               |
| NK-SB-46    | 1017146     | 8/13/96       | t         | 12      | SB                   | х           |                   |                       |            |            |      |        |            |               |
| NK-SB-46    | 1017205     | 8/13/96       | 9.5       | 10.5    | GW                   | х           | x                 |                       |            |            |      | X      |            | х             |
| NK-SB-46    | 1017147     | 8/13/96       | 12        | 14      | SB                   | х           |                   |                       |            |            |      |        |            |               |
| NK-SB-46    | 1017148     | 8/13/96       | 14        | 15      | SB                   | х           |                   |                       |            |            |      |        |            |               |
| NK-SL-04    | 1006167     | 8/ 2/95       |           |         | SRL                  |             | Х                 |                       |            |            | х    | х      |            |               |
| NK-SS-14    | 01015061793 | 6/17/93       |           |         | SS                   |             | х                 | х                     |            |            | х    | X      |            | -             |
| NK-TP-14B   | 1635143     | 6/ 9/97       |           |         | SS                   |             | х                 |                       |            |            |      | X      |            | х             |
| NK-TP-14E   | 1635141     | 6/ 9/97       |           |         | SS                   |             | х                 |                       |            |            |      | X      |            | x             |
| NK-TP-14N   | 1635139     | 6/ 9/97       |           |         | SS                   |             | x                 |                       |            |            |      | X      |            | x             |
| NK-TP-14S   | 1635140     | 6/ 9/97       |           |         | SS                   |             | x                 |                       |            |            |      | X      |            | x             |
| NK-TP-14W   | 1635142     | 6/ 9/97       |           |         | SS                   |             | x                 |                       |            |            |      | х      |            | x             |
|             |             |               |           |         |                      |             |                   |                       |            |            |      |        |            |               |

Notes: 1. Legend: X - Analysed; at least one analyte over the detection limit; x - Analysed, no analytes in group over the detection limit

2. Printed on 09/24/98

LΕΔ

### Table 2 DRAFT SUMMARY OF SAMPLING AND ANALYTICAL INFORMATION (DETECTS) - SOIL P&W East Hartford: X-314 Septic System Area

Page 1 of 3

|                              |              |             |             |             |                                                  |             |             | 1050 1 01 5                           |
|------------------------------|--------------|-------------|-------------|-------------|--------------------------------------------------|-------------|-------------|---------------------------------------|
|                              | Location ID  | NK-SB-04    | NK-SB-221   | NK-SB-43    | NK-SB-43                                         | NK-SB-44    | NK-SB-44    | NK-SB-45                              |
|                              | Sample ID    | 1006263     | 1021754     | 1017115     | 1017119                                          | 1017124     | 1017127     | 1017132                               |
|                              | Sample Date  | 08/08/1995  | 11/13/1996  | 08/12/1996  | 08/12/1996                                       | 08/12/1996  | 08/12/1996  | 08/12/1996                            |
|                              | Sample Time  | 10:57       | 10:45       | 13:20       | 13:52                                            | 14:30       | 14:58       | 15:40                                 |
|                              | Sample Depth | 2' - 4'     | 0' - 2'     | 0' - 2'     | 6' - 8'                                          | 0' - 2'     | 6' - 8'     | 0' - 2'                               |
|                              | Laboratory   | AEL         | AEL         | AEL         | AEL                                              | AEL         | AEL         | AEL                                   |
|                              | Lab. Number  | AEL95008789 | AEL96013186 | AEL96009144 | AEL96009145                                      | AEL96009146 | AEL96009228 | AEL96009229                           |
| Constituent                  | Units        |             |             |             |                                                  |             |             |                                       |
| Date Metals Analysed         | -            | 08/16/1995  |             | 08/20/1996  | 08/20/1996                                       | 08/20/1996  | 08/22/1996  | 08/22/1996                            |
| Date Physical Analysed       | -            |             | 11/27/1996  |             |                                                  | 08/30/1996  |             |                                       |
| Arsenic                      | mg/kg        | 1.1         |             |             |                                                  |             |             | 5.87                                  |
| Barium                       | mg/kg        | 21.1        |             | 19.1        | 13.4                                             | 17.6        | 12.9        | 62.4                                  |
| Beryllium                    | mg/kg        |             |             |             |                                                  |             |             |                                       |
| Chromium                     | mg/kg        | 6.36        |             | 6.28        | 7.62                                             | 6.95        | 8.03        | 12.4                                  |
| Chromium (Total)             | mg/kg        |             |             |             |                                                  |             |             |                                       |
| Copper                       | mg/kg        |             |             | 6.18        | 5.74                                             | 5.6         |             |                                       |
| Load                         | mg/kg        |             |             |             |                                                  |             |             |                                       |
| Mercury                      | mg/kg        |             |             |             |                                                  |             |             |                                       |
| Nickel                       | mg/kg        |             |             |             |                                                  |             |             |                                       |
| Zinc                         | mg/kg        |             |             | 20.6        | 19.1                                             | 21.9        | 17          | 33.8                                  |
| Total Petroleum Hydrocarbons | mg/kg        |             | 71.5        |             |                                                  | 328         |             |                                       |
|                              |              |             |             |             |                                                  |             |             |                                       |
|                              |              |             |             |             |                                                  |             |             |                                       |
|                              |              |             |             |             |                                                  |             |             |                                       |
|                              |              |             |             |             |                                                  |             |             |                                       |
|                              |              |             |             |             |                                                  |             |             |                                       |
| ·                            |              |             |             |             |                                                  |             |             |                                       |
|                              |              |             |             |             |                                                  |             |             |                                       |
|                              |              |             |             |             |                                                  |             | 1           |                                       |
|                              |              |             | <u> </u>    | <u> </u>    |                                                  |             |             |                                       |
|                              |              | <del></del> |             |             |                                                  |             |             |                                       |
|                              |              |             |             |             | <u> </u>                                         | <u> </u>    | †           | · · · · · · · · · · · · · · · · · · · |
|                              |              |             |             |             |                                                  |             |             |                                       |
|                              |              |             |             | <b>†</b>    | <del> </del>                                     |             |             |                                       |
|                              |              |             |             | 1           |                                                  |             | 1           |                                       |
|                              |              |             |             |             |                                                  |             |             |                                       |
|                              |              |             | <del></del> | <del></del> | <del>                                     </del> |             | <del></del> | <del> </del>                          |

Notes: 1. Only Detects Shown

2. Printed on 09/24/98



### Table 2 DRAFT SUMMARY OF SAMPLING AND ANALYTICAL INFORMATION (DETECTS) - SOIL P&W East Hartford: X-314 Septic System Area

Page 2 of 3

|                              |              |              |             |                                                  |              |                                                  |                                                  | Page 2 of 3                                      |
|------------------------------|--------------|--------------|-------------|--------------------------------------------------|--------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
|                              | Location ID  | NK-SB-45     | NK-SB-46    | NK-SB-46                                         | NK-SS-14     | NK-TP-14B                                        | NK-TP-14E                                        | NK-TP-14N                                        |
|                              | Sample ID    | 1017135      | 1017141     | 1017144                                          | 01015061793  | 1635143                                          | 1635141                                          | 1635139                                          |
|                              | Sample Date  | 08/12/1996   | 08/13/1996  | 08/13/1996                                       | 06/17/1993   | 06/09/1997                                       | 06/09/1997                                       | 06/09/1997                                       |
|                              | Sample Time  | 16:07        | 10:40       | 11:10                                            |              | 09:30                                            | 09:25                                            | 09:20                                            |
|                              | Sample Depth | 6' - 8'      | 0' - 2'     | 6' - 8'                                          |              |                                                  |                                                  |                                                  |
|                              | Laboratory   | AEL          | AEL         | AEL                                              | ENS          | QUAN                                             | QUAN                                             | QUAN                                             |
|                              | Lab. Number  | AEL96009230  | AEL96009231 | AEL96009232                                      | 0291110001SA | A7F100149034                                     | A7F100149032                                     | A7F100149030                                     |
| Constituent                  | Units        |              |             |                                                  |              |                                                  | _                                                |                                                  |
| Date Metals Analysed         |              | 08/22/1996   | 08/22/1996  | 08/22/1996                                       | 06/28/1993   | 06/26/1997                                       | 06/26/1997                                       | 06/26/1997                                       |
| Date Physical Analysed       | •            |              |             |                                                  |              |                                                  |                                                  |                                                  |
| Arsenic                      | mg/kg        |              |             |                                                  |              |                                                  |                                                  |                                                  |
| Barium                       | mg/kg        | 14           | 20.1        | 13.5                                             | 27.8         |                                                  |                                                  | 23.9                                             |
| Beryllium                    | mg/kg        |              |             |                                                  | 0.23         |                                                  |                                                  |                                                  |
| Chromium                     | mg/kg        | 6.11         |             | 6.3                                              |              | 7.9                                              | 6.9                                              | 9.8                                              |
| Chromium (Total)             | mg/kg        |              |             |                                                  | 5.5          |                                                  |                                                  |                                                  |
| Copper                       | mg/kg        |              |             | <del>                                     </del> |              |                                                  |                                                  |                                                  |
| Load                         | mg/kg        |              |             |                                                  | 3.6          | 6.1                                              | 3.5                                              | 3.1                                              |
| Mercury                      | mg/kg        |              | 0.233       |                                                  |              |                                                  |                                                  |                                                  |
| Nickel                       | mg/kg        |              |             |                                                  | 4.7          | 6.7                                              | 7.2                                              | 9.0                                              |
| Zinc                         | mg/kg        | 16.3         | 20.6        | 16.5                                             | 13.8         | 1                                                | 26.0                                             | 22.2                                             |
| Total Petroleum Hydrocarbons | mg/kg        |              |             |                                                  |              |                                                  |                                                  |                                                  |
|                              |              |              |             |                                                  |              |                                                  |                                                  |                                                  |
|                              |              |              |             |                                                  |              |                                                  | ,                                                |                                                  |
|                              |              | <u> </u>     |             |                                                  |              |                                                  |                                                  |                                                  |
|                              |              |              |             |                                                  |              |                                                  |                                                  |                                                  |
|                              |              |              |             |                                                  |              | 1                                                |                                                  |                                                  |
|                              |              |              |             |                                                  |              |                                                  |                                                  |                                                  |
|                              |              |              | T           |                                                  |              |                                                  |                                                  |                                                  |
|                              |              |              |             |                                                  |              |                                                  |                                                  |                                                  |
|                              |              |              |             | 1                                                |              |                                                  |                                                  |                                                  |
|                              |              |              |             |                                                  |              | 1                                                |                                                  |                                                  |
|                              |              |              |             | 1                                                | <u> </u>     | 1                                                |                                                  |                                                  |
|                              |              |              |             |                                                  | 1            |                                                  |                                                  | 1                                                |
|                              |              | <u> </u>     | 1           | 1                                                | 1            | <b>†</b>                                         | <del> </del>                                     |                                                  |
|                              |              | 1            | 1           | <del> </del>                                     | 1            |                                                  | 1                                                | <del>                                     </del> |
| <del></del>                  | <del></del>  | <del> </del> | 1           |                                                  | <b>†</b>     | <del>                                     </del> | <del>                                     </del> | <del> </del>                                     |
| <del> </del>                 |              |              |             |                                                  |              | <del></del>                                      | <del></del>                                      | <del></del>                                      |

Notes: 1. Only Detects Shown

2. Printed on 09/24/98

LEA

### Table 2 DRAFT SUMMARY OF SAMPLING AND ANALYTICAL INFORMATION (DETECTS) - SOIL P&W East Hartford: X-314 Septic System Area

Page 3 of 3

| L                            |              |              |              | <br> |      | Page 3 01 3 |
|------------------------------|--------------|--------------|--------------|------|------|-------------|
|                              | Location ID  | NK-TP-14S    | NK-TP-14W    |      |      |             |
|                              | Sample ID    | 1635140      | 1635142      |      |      |             |
|                              | Sample Date  | 06/09/1997   | 06/09/1997   |      |      |             |
| •                            | Sample Time  | 09:22        | 09:27        |      |      |             |
|                              | Sample Depth |              |              |      |      |             |
|                              | Laboratory   | QUAN         | QUAN         |      |      |             |
|                              | Lab. Number  | A7F100149031 | A7F100149033 |      |      |             |
| Constituent                  | Units        |              |              |      |      |             |
| Date Metals Analysed         | •            | 06/26/1997   | 06/26/1997   |      |      |             |
| Date Physical Analysed       | •            |              |              |      |      |             |
| Arsenic                      | mg/kg        |              |              |      |      |             |
| Barium                       | mg/kg        |              |              |      |      |             |
| Beryllium                    | mg/kg        |              |              |      |      |             |
| Chromium                     | mg/kg        | 6.0          | 6.3          |      |      |             |
| Chromium (Total)             | mg/kg        |              |              |      |      |             |
| Copper                       | mg/kg        |              |              |      |      |             |
| Lead                         | mg/kg        | 3.3          | 3.3          |      |      |             |
| Mercury                      | mg/kg        |              |              |      |      |             |
| Nickel                       | mg/kg        | 5.2          | 6.6          |      | <br> |             |
| Zinc                         | mg/kg        | 16.8         | 18.1         |      |      |             |
| Total Petroleum Hydrocarbons | mg/kg        |              |              |      | <br> |             |
|                              |              |              |              |      |      |             |
|                              |              |              |              |      |      |             |
|                              |              |              |              |      |      |             |
|                              |              |              |              |      |      |             |
|                              |              |              |              |      |      |             |
|                              |              |              |              |      |      |             |
|                              |              |              |              |      |      |             |
|                              |              |              |              |      |      |             |
|                              |              |              |              |      |      |             |
|                              |              |              |              |      |      |             |
|                              |              |              |              |      |      |             |
|                              |              |              |              |      |      |             |
|                              |              |              |              |      |      |             |
|                              |              |              |              |      |      |             |
|                              |              |              |              |      |      |             |
|                              | 1            |              | <del></del>  | <br> | <br> |             |

Notes: 1. Only Detects Shown

2. Printed on 09/24/98



### Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 1 of 66

|                                      |               |              |             |              |              |              |              | Page 1 of   |
|--------------------------------------|---------------|--------------|-------------|--------------|--------------|--------------|--------------|-------------|
|                                      | Location ID   | NK-SB-04     | NK-SB-04    | NK-SB-04     | NK-SB-04     | NK-SB-04     | NK-SB-04     | NK-SB-219   |
|                                      | Sample ID     | 1006262      | 1006263     | 1006263      | 1006264      | 1006265      | 1006482      | 1021748     |
|                                      | Sample Date   | 08/08/1995   | 08/08/1995  | 08/08/1995   | 08/08/1995   | 08/08/1995   | 08/08/1995   | 11/13/1996  |
|                                      | Sample Time   | 11:02        | 10:57       | 10:57        | 11:08        | 11:15        | 11:55        | 09:45       |
|                                      | Sample Depth  | 0' - 2'      | 2' - 4'     | 2' - 4'      | 4' - 6'      | 6' - 8'      | 8' - 10'     | 0' - 2'     |
|                                      | Laboratory    | LEA          | AEL         | LEA          | LEA          | LEA          | LEA          | AEL         |
|                                      | Lab. Number   | 95-00202-455 | AEL95008789 | 95-00203-456 | 95-00204-457 | 95-00205-458 | 95-00206-459 | AEL96013182 |
| Constituent                          | Units         |              |             |              |              |              |              |             |
| Date Metals Analysed                 | •             |              | 08/16/1995  |              |              |              |              |             |
| Date Organics Analysed               | -             | 08/09/1995   | 08/18/1995  | 08/09/1995   | 08/09/1995   | 08/09/1995   | 08/09/1995   |             |
| Date PCBs Analysed                   |               |              | 08/22/1995  |              |              |              |              |             |
| Date Physical Analysed               | •             |              |             |              |              |              |              | 11/27/1996  |
| Date Semi-volatile Organics Analysed |               |              |             |              |              |              |              |             |
| Arsenic                              | mg/kg         |              | 1.1         |              |              |              |              |             |
| Barium                               | mg/kg         |              | 21.1        |              |              |              |              |             |
| Beryllium                            | mg/kg         |              |             |              |              |              |              |             |
| Cadmium                              | mg/kg         |              | <3.23       |              |              |              |              |             |
| Chromium                             | mg/kg         | •            | 6.36        |              |              |              |              |             |
| Chromium (Total)                     | mg/kg         |              |             |              |              |              |              |             |
| Copper                               | mg/kg         |              |             |              |              |              |              |             |
| Lead                                 | mg/kg         |              | <21.6       |              |              |              |              |             |
| Mercury                              | mg/kg         |              | <0.216      |              |              |              |              |             |
| Nickel                               | mg/kg         |              |             |              |              |              |              |             |
| Selenium                             | mg/kg         | T            | <1.08       |              |              |              |              |             |
| Silver                               | mg/kg         |              | <5.39       |              |              |              |              |             |
| Zinc                                 | mg/kg         |              |             |              |              |              |              |             |
| PCB 1016                             | μg/kg         |              | <210        |              |              |              |              |             |
| PCB 1221                             | μ <b>g/kg</b> |              | <210        |              |              |              |              |             |
| PCB 1232                             | μg/kg         |              | <210        |              |              |              |              |             |
| PCB 1242                             | μg/kg         |              | <210        |              |              |              |              |             |
| PCB 1248                             | μ <b>g/kg</b> |              | <210        |              |              |              |              |             |
| PCB 1254                             | μg/kg         |              | <210        |              |              |              |              |             |
| PCB 1260                             | μg/kg         |              | <210        |              | 1            |              |              |             |
| Dibromo-3-chloropropane, 1, 2-       | μg/kg         |              |             | <u> </u>     |              |              |              |             |
| Total Petroleum Hydrocarbons         | mg/kg         |              |             |              |              |              |              | <36.6       |
| Acenaphthene                         | μg/kg         | T            | <u> </u>    |              | <u> </u>     |              |              |             |

# Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 2 of 66

|                                |                |              |             |              |              |              |              | Page 2 of   |
|--------------------------------|----------------|--------------|-------------|--------------|--------------|--------------|--------------|-------------|
|                                | Location ID    | NK-SB-04     | NK-SB-04    | NK-SB-04     | NK-SB-04     | NK-SB-04     | NK-SB-04     | NK-SB-219   |
|                                | Sample ID      | 1006262      | 1006263     | 1006263      | 1006264      | 1006265      | 1006482      | 1021748     |
|                                | Sample Date    | 08/08/1995   | 08/08/1995  | 08/08/1995   | 08/08/1995   | 08/08/1995   | 08/08/1995   | 11/13/1996  |
|                                | Sample Time    | 11:02        | 10:57       | 10:57        | 11:08        | 11:15        | 11:55        | 09:45       |
| _                              | Sample Depth   | 0' - 2'      | 2' - 4'     | 2' - 4'      | 4' - 6'      | 6' - 8'      | 8' - 10'     | 0' - 2'     |
|                                | Laboratory     | LEA          | AEL         | LEA          | LEA          | LEA          | LEA          | AEL         |
|                                | Lab. Number    | 95-00202-455 | AEL95008789 | 95-00203-456 | 95-00204-457 | 95-00205-458 | 95-00206-459 | AEL96013182 |
| Constituent                    | Units          |              |             |              |              |              |              |             |
| Acenaphthylene                 | μ <b>g/k</b> g |              |             |              |              |              |              |             |
| Anthracene                     | μ <b>g/k</b> g |              |             |              |              |              |              |             |
| Benzidine                      | μg/kg          |              |             |              |              |              |              |             |
| Benzo[a]anthracene             | μg/kg          |              |             |              |              |              |              |             |
| Benzo[a]pyrene                 | μg/kg          |              |             |              |              |              |              |             |
| Benzo[b]fluoranthene           | μg/kg          |              |             |              |              |              |              |             |
| Benzo[ghi]perylene             | μg/kg          |              |             |              |              |              |              |             |
| Benzo[k]fluoranthene           | μg/kg          |              |             |              |              |              |              |             |
| Bis(2-chloroethoxy)methane     | μg/kg          |              |             |              |              |              |              |             |
| Bis(2-chloroethyl)ether        | μg/kg          |              |             |              |              |              |              |             |
| Bis(2-sthylhexyl)phthalate     | μg/kg          |              |             |              |              |              |              |             |
| Bromophenyl Phenyl Ether, 4-   | μg/kg          |              |             |              |              |              |              |             |
| Butyl Benzyl Phthalate         | μg/kg          |              |             |              |              |              |              |             |
| Carbazole                      | μg/kg          |              |             |              |              |              |              |             |
| Chloroaniline,4-               | μg/kg          |              |             |              |              |              |              |             |
| Chloronaphthalene,2-           | μg/kg          |              |             |              |              |              |              |             |
| Chlorophenol,2-                | μg/kg          |              |             |              |              |              |              |             |
| Chlorophenyl Phenyl Ether,4-   | μg/kg          |              |             |              |              |              |              |             |
| Chrysene                       | μ <b>g/kg</b>  |              |             |              |              |              |              |             |
| Cresol,2-                      | μg/kg          |              |             |              |              |              |              |             |
| Cresol,4-                      | μg/kg          |              |             |              |              |              |              |             |
| Di-n-butyl Phthalate           | μg/kg          |              |             |              |              |              |              |             |
| Di-n-octyl Phthalate           | μg/kg          |              |             |              |              |              |              |             |
| Dibenzo[a,h]anthracene         | μg/kg          | 1            |             |              |              |              |              |             |
| Dibenzofuran                   | μg/kg          |              |             |              |              |              |              |             |
| Dichloro-2-butylene,1,4-trans- | μg/kg          |              |             |              |              |              |              |             |
| Dichlorobenzidine,3,3'-        | μg/kg          |              |             | <del> </del> |              |              |              | <u> </u>    |
|                                | <u> </u>       | <del></del>  | <del></del> | <del></del>  |              | <del></del>  | <del>+</del> | <u></u>     |



### Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 3 of 66

|                           |                |              |             |              |              |              |               | rage 5 0.   |
|---------------------------|----------------|--------------|-------------|--------------|--------------|--------------|---------------|-------------|
|                           | Location ID    | NK-SB-04     | NK-SB-04    | NK-SB-04     | NK-SB-04     | NK-SB-04     | NK-SB-04      | NK-SB-219   |
|                           | Sample ID      | 1006262      | 1006263     | 1006263      | 1006264      | 1006265      | 1006482       | 1021748     |
|                           | Sample Date    | 08/08/1995   | 08/08/1995  | 08/08/1995   | 08/08/1995   | 08/08/1995   | 08/08/1995    | 11/13/1996  |
|                           | Sample Time    | 11:02        | 10:57       | 10:57        | 11:08        | 11:15        | 11:55         | 09:45       |
|                           | Sample Depth   | 0' - 2'      | 2' - 4'     | 2' - 4'      | 4' - 6'      | 6' - 8'      | 8' - 10'      | 0' - 2'     |
|                           | Laboratory     | LEA          | AEL         | LEA          | LEA          | LEA          | LEA           | AEL         |
|                           | Lab. Number    | 95-00202-455 | AEL95008789 | 95-00203-456 | 95-00204-457 | 95-00205-458 | 95-00206-459  | AEL96013182 |
| Constituent               | Units          |              |             |              |              |              |               |             |
| Diethyl Phthalate         | μ <b>g/kg</b>  |              |             |              |              |              |               |             |
| Dimethyl Phthalate        | μg/kg          | 1            |             |              |              |              |               | 1           |
| Dimethylphenol,2,4-       | μg/kg          | <u> </u>     |             |              | 7            | <u> </u>     |               | 1           |
| Dinitro-o-cresol, 4,6-    | μg/kg          | I            |             | T            |              |              |               |             |
| Dinitrophenol, 2,4-       | μg/kg          |              |             |              |              |              |               |             |
| Dinitrotoluene, 2, 4-     | μ <b>g/k</b> g |              |             |              |              |              |               |             |
| Dinitrotoluene,2,6-       | μg/kg          |              |             |              |              |              |               |             |
| Diphenylhydrazine,1,2-    | μg/kg          |              |             |              |              |              |               |             |
| Fluoranthene              | μg/kg          |              |             |              |              |              |               |             |
| Fluorene                  | μg/kg          |              |             |              |              |              |               |             |
| Herachlorobenzene         | µg/kg          |              |             |              |              |              |               |             |
| Hexachlorobutadiene       | μg/kg          |              |             |              |              |              |               |             |
| Hexachlorocyclopentadiene | μg/kg          |              |             |              |              |              |               |             |
| Hexachloroethane          | μ <b>g/kg</b>  |              |             |              |              |              |               |             |
| Indeno(1,2,3-cd)pyrene    | μg/kg          |              |             |              |              |              |               |             |
| Isophorone                | μg/kg          |              |             |              |              |              |               |             |
| Methylnaphthalene,2-      | μ <b>g/kg</b>  |              |             |              |              |              |               |             |
| N-nitrosodi-n-propylamine | μg/kg          |              |             |              |              |              |               |             |
| N-nitrosodimethylamine    | μg/kg          |              |             |              |              |              |               |             |
| N-nitrosodiphenylamine    | µg/kg          |              |             |              |              |              |               |             |
| Napishalone               | μg/kg          |              |             |              |              |              |               |             |
| Nitroaniline,2-           | μg/kg          |              | <u> </u>    |              |              |              |               |             |
| Nitroaniline,3-           | µg/kg          |              | T           |              |              |              | 1             |             |
| Nitroaniline,4-           | μg/kg          |              |             |              |              |              |               |             |
| Nitrobenzene              | μg/kg          |              |             |              |              |              |               |             |
| Nitrophenol,2-            | μg/kg          | 1            |             |              |              |              |               |             |
| Nitrophenol,4-            | μ <b>g/kg</b>  | 1            |             |              |              |              |               |             |
| Pentachlorophenol         | μ <b>g/kg</b>  | 1            | 1           | <del> </del> | 1            | <del> </del> | <del>- </del> | 1           |

Notes: 1. Printed on 09/24/98

LΕΔ

### Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 4 of 66

|                                |                |              |             |              |              |              |              | Page 4 of   |
|--------------------------------|----------------|--------------|-------------|--------------|--------------|--------------|--------------|-------------|
|                                | Location ID    | NK-SB-04     | NK-SB-04    | NK-SB-04     | NK-SB-04     | NK-SB-04     | NK-SB-04     | NK-SB-219   |
|                                | Sample ID      | 1006262      | 1006263     | 1006263      | 1006264      | 1006265      | 1006482      | 1021748     |
|                                | Sample Date    | 08/08/1995   | 08/08/1995  | 08/08/1995   | 08/08/1995   | 08/08/1995   | 08/08/1995   | 11/13/1996  |
|                                | Sample Time    | 11:02        | 10:57       | 10:57        | 11:08        | 11:15        | 11:55        | 09:45       |
|                                | Sample Depth   | 0' - 2'      | 2' - 4'     | 2' - 4'      | 4' - 6'      | 6' - 8'      | 8' - 10'     | 0' - 2'     |
|                                | Laboratory     | LEA          | AEL         | LEA          | LEA          | LEA          | LEA          | AEL         |
|                                | Lab. Number    | 95-00202-455 | AEL95008789 | 95-00203-456 | 95-00204-457 | 95-00205-458 | 95-00206-459 | AEL96013182 |
| Constituent                    | Units          |              |             |              |              |              |              |             |
| Phenanthrene                   | μ <b>g/k</b> g |              |             |              |              |              |              |             |
| Phonol                         | μg/kg          |              |             |              |              |              |              |             |
| Propane),2,2'-oxybis(2-chloro- | μg/kg          |              | <u> </u>    |              |              |              |              |             |
| Pyrone                         | μg/kg          |              |             |              |              |              |              |             |
| Trichlorobenzene,1,2,4-        | μg/kg          |              |             |              |              |              |              |             |
| Trichlorophenol,2,4,5-         | μ <b>g/kg</b>  |              |             |              |              |              |              |             |
| Trichlorophenol,2,4,6-         | μg/kg          |              |             |              |              |              |              |             |
| Acetone                        | μ <b>g/kg</b>  |              | <25         |              |              |              |              |             |
| Acetonitrile                   | μ <b>g/k</b> g |              |             |              |              |              |              |             |
| Acrolein                       | μg/kg          |              | <13         |              |              |              |              |             |
| Acrylonitrile                  | μg/kg          |              | <13         |              |              |              |              |             |
| Allyl Chloride                 | μg/kg          |              |             |              |              |              |              |             |
| Benzene                        | μ <b>g/k</b> g |              | <5.0        |              |              |              |              |             |
| Benzene (screening)            | μg/kg          | <b>3</b>     |             | 3            | ব্য          | <3           | ব            |             |
| Bromobenzene                   | μg/kg          |              | <5.0        |              |              |              |              |             |
| Bromoform                      | μg/kg          |              | <5.0        |              |              |              |              |             |
| Carbon Disulfide               | μg/kg          | 1            | <5.0        |              |              |              |              |             |
| Carbon Tetrachloride           | μg/kg          |              | <5.0        |              |              |              |              |             |
| Chlorobenzene                  | μg/kg          |              | <5.0        |              |              |              |              |             |
| Chlorodibromomethane           | μg/kg          |              | <5.0        |              |              |              |              |             |
| Chloroethane                   | μg/kg          |              | <5.0        |              |              |              |              |             |
| Chloroethyl Vinyl Ether,2-     | μg/kg          |              | <5.0        |              |              |              |              |             |
| Chloroform                     | μg/kg          |              | <5.0        |              |              |              |              |             |
| Chloroprene, beta-             | μ <b>g/kg</b>  |              |             |              |              |              |              |             |
| Chlorotoluene,o-               | μg/kg          |              | <5.0        |              |              |              |              |             |
| Chlorotoluene,p-               | μg/kg          | 1            | <5.0        |              |              |              |              |             |
| Dibromomethane                 | μg/kg          |              | <5.0        |              |              |              | 1            | 1           |
| Dichlorobenzene, 1, 2-         | μg/kg          | <u> </u>     | <5.0        | ·            |              |              |              |             |

### Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 5 of 66

|                                |                |              |             |              |              |              |              | Page 5 of   |
|--------------------------------|----------------|--------------|-------------|--------------|--------------|--------------|--------------|-------------|
|                                | Location ID    | NK-SB-04     | NK-SB-04    | NK-SB-04     | NK-SB-04     | NK-SB-04     | NK-SB-04     | NK-SB-219   |
|                                | Sample ID      | 1006262      | 1006263     | 1006263      | 1006264      | 1006265      | 1006482      | 1021748     |
|                                | Sample Date    | 08/08/1995   | 08/08/1995  | 08/08/1995   | 08/08/1995   | 08/08/1995   | 08/08/1995   | 11/13/1996  |
|                                | Sample Time    | 11:02        | 10:57       | 10:57        | 11:08        | 11:15        | 11:55        | 09:45       |
|                                | Sample Depth   | 0' - 2'      | 2' - 4'     | 2' - 4'      | 4' - 6'      | 6' - 8'      | 8' - 10'     | 0' - 2'     |
|                                | Laboratory     | LEA          | AEL         | LEA          | LEA          | LEA          | LEA          | AEL         |
|                                | Lab, Number    | 95-00202-455 | AEL95008789 | 95-00203-456 | 95-00204-457 | 95-00205-458 | 95-00206-459 | AEL96013182 |
| Constituent                    | Units          |              |             |              |              |              |              |             |
| Dichlorobenzene, 1,3-          | μ <b>g/kg</b>  |              | <5.0        |              |              |              |              |             |
| Dichlorobenzene, 1,4-          | μg/kg          | 1            | <5.0        | T            |              |              |              |             |
| Dichlorobromomethane           | μg/kg          | 1            | <5.0        |              |              |              |              |             |
| Dichlorodifluoromethane        | μg/kg          | I            | <5.0        |              |              |              |              |             |
| Dichloroethane, 1, 1-          | μ <b>g/kg</b>  |              | <5.0        |              |              |              |              |             |
| Dichloroethane, 1,2-           | μg/kg          |              | <5.0        |              |              |              |              |             |
| Dichloroethylene, 1, 1-        | μg/kg          |              | <5.0        |              |              |              |              |             |
| Dichloroethylene, 1,2-         | μg/kg          |              |             |              |              |              |              |             |
| Dichloroethylene, 1,2-cis-     | μg/kg          |              | <5.0        |              |              |              |              |             |
| Dichloroethylene, 1,2-trans-   | μg/kg          |              | <5.0        |              |              |              |              |             |
| Dichloropropane, 1,2-          | μg/kg          |              | <5.0        |              |              |              |              |             |
| Dichloropropylene,1,3-         | μg/kg          |              |             |              |              |              |              |             |
| Dichloropropylene, 1, 3-cis-   | μg/kg          |              | <5.0        |              |              |              |              |             |
| Dichloropropylene, 1, 3-trans- | μg/kg          |              | <5.0        |              |              |              |              |             |
| Dioxane, 1,4-                  | μg/kg          |              |             |              |              |              |              |             |
| Ethyl Methacrylate             | μ <b>g/k</b> g |              |             |              |              |              |              |             |
| Ethylbenzene                   | μg/kg          |              | <5.0        |              |              |              |              |             |
| Ethylbenzene (screening)       | μg/kg          | <5           |             | <5           | <5           | <5           | <5           |             |
| Ethylene Dibromide             | ha/ka          |              |             |              |              |              |              |             |
| Hexanone,2-                    | μg/kg          |              | <13         |              |              |              |              | <u> </u>    |
| Iodomethane                    | μ <b>g/kg</b>  |              |             |              |              |              |              | <u> </u>    |
| Isobutyl Alcohol               | μ <b>g/kg</b>  |              |             |              |              |              |              |             |
| Methacrylonitrile              | μg/kg          |              |             |              |              |              |              |             |
| Methyl Bromide                 | μg/kg          |              | <5.0        |              |              |              |              |             |
| Methyl Chloride                | μ <b>g/kg</b>  |              | <5.0        |              |              |              |              |             |
| Methyl Ethyl Ketone            | µg∕kg          |              | <13         |              |              |              |              |             |
| Methyl Methacrylate            | μg/kg          | T            |             |              |              |              |              |             |
| Methyl-2-pentanone,4-          | μg/kg          | T            | <13         |              |              |              |              |             |

Notes: I. Printed on 09/24/98

LEA

### Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 6 of 66

|                |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                   |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                   |                                                             | Fage 0 0                                                              |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------|
| Location ID    | NK-SB-04                                                                                                                                                                                                                                                                                                                                                                                                                    | NK-SB-04                                                                                                                          | NK-SB-04                                                                                                                                                                                                                       | NK-SB-04                                                                                                                                                                                                                                                                                     | NK-SB-04                                          | NK-SB-04                                                    | NK-SB-219                                                             |
| Sample ID      | 1006262                                                                                                                                                                                                                                                                                                                                                                                                                     | 1006263                                                                                                                           | 1006263                                                                                                                                                                                                                        | 1006264                                                                                                                                                                                                                                                                                      | 1006265                                           | 1006482                                                     | 1021748                                                               |
| Sample Date    | 08/08/1995                                                                                                                                                                                                                                                                                                                                                                                                                  | 08/08/1995                                                                                                                        | 08/08/1995                                                                                                                                                                                                                     | 08/08/1995                                                                                                                                                                                                                                                                                   | 08/08/1995                                        | 08/08/1995                                                  | 11/13/1996                                                            |
| Sample Time    | 11:02                                                                                                                                                                                                                                                                                                                                                                                                                       | 10:57                                                                                                                             | 10:57                                                                                                                                                                                                                          | 11:08                                                                                                                                                                                                                                                                                        | 11:15                                             | 11:55                                                       | 09:45                                                                 |
| Sample Depth   | 0' - 2'                                                                                                                                                                                                                                                                                                                                                                                                                     | 2' - 4'                                                                                                                           | 2' - 4'                                                                                                                                                                                                                        | 4' - 6'                                                                                                                                                                                                                                                                                      | 6' - 8'                                           | 8' - 10'                                                    | 0' - 2'                                                               |
| Laboratory     | LEA                                                                                                                                                                                                                                                                                                                                                                                                                         | AEL                                                                                                                               | LEA                                                                                                                                                                                                                            | LEA                                                                                                                                                                                                                                                                                          | LEA                                               | LEA                                                         | AEL                                                                   |
| Lab. Number    | 95-00202-455                                                                                                                                                                                                                                                                                                                                                                                                                | AEL95008789                                                                                                                       | 95-00203-456                                                                                                                                                                                                                   | 95-00204-457                                                                                                                                                                                                                                                                                 | 95-00205-458                                      | 95-00206-459                                                | AEL96013182                                                           |
| Units          |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                   |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                   |                                                             |                                                                       |
| μg/kg          |                                                                                                                                                                                                                                                                                                                                                                                                                             | <5.0                                                                                                                              |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                   |                                                             |                                                                       |
| μg/kg          |                                                                                                                                                                                                                                                                                                                                                                                                                             | <13                                                                                                                               |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                   |                                                             |                                                                       |
| μg/kg          |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                   |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                   |                                                             |                                                                       |
| μg/kg          |                                                                                                                                                                                                                                                                                                                                                                                                                             | <5.0                                                                                                                              |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                   |                                                             |                                                                       |
| μg/kg          |                                                                                                                                                                                                                                                                                                                                                                                                                             | <5.0                                                                                                                              |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                   |                                                             |                                                                       |
| μ <b>g/k</b> g |                                                                                                                                                                                                                                                                                                                                                                                                                             | <5.0                                                                                                                              |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                   |                                                             |                                                                       |
| μg/kg          |                                                                                                                                                                                                                                                                                                                                                                                                                             | <5.0                                                                                                                              |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                   |                                                             |                                                                       |
| μg/kg          | <5                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                   | <5                                                                                                                                                                                                                             | <5                                                                                                                                                                                                                                                                                           | <5                                                | <5                                                          |                                                                       |
| μg/kg          |                                                                                                                                                                                                                                                                                                                                                                                                                             | <5.0                                                                                                                              |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                   |                                                             |                                                                       |
| μg/kg          | <5                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                   | <5                                                                                                                                                                                                                             | <5                                                                                                                                                                                                                                                                                           | <5                                                | <5                                                          |                                                                       |
| μg/kg          |                                                                                                                                                                                                                                                                                                                                                                                                                             | <5.0                                                                                                                              |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                   |                                                             |                                                                       |
| μg/kg          | <8                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                   | <8                                                                                                                                                                                                                             | <8                                                                                                                                                                                                                                                                                           | <8                                                | <8                                                          |                                                                       |
| μg/kg          |                                                                                                                                                                                                                                                                                                                                                                                                                             | <5.0                                                                                                                              |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                   |                                                             |                                                                       |
| μg/kg          |                                                                                                                                                                                                                                                                                                                                                                                                                             | <5.0                                                                                                                              |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                   |                                                             |                                                                       |
| μg/kg          | <8                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                   | <8                                                                                                                                                                                                                             | <8                                                                                                                                                                                                                                                                                           | <8                                                | <8                                                          |                                                                       |
| μg/kg          |                                                                                                                                                                                                                                                                                                                                                                                                                             | <5.0                                                                                                                              |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                   |                                                             |                                                                       |
| μg/kg          |                                                                                                                                                                                                                                                                                                                                                                                                                             | <5.0                                                                                                                              |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                   |                                                             |                                                                       |
| μg/kg          |                                                                                                                                                                                                                                                                                                                                                                                                                             | <5.0                                                                                                                              |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                   |                                                             |                                                                       |
| μg/kg          |                                                                                                                                                                                                                                                                                                                                                                                                                             | <5.0                                                                                                                              |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                   |                                                             |                                                                       |
| μg/kg          | <6                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                   | <6                                                                                                                                                                                                                             | <6                                                                                                                                                                                                                                                                                           | <6                                                | <6                                                          |                                                                       |
| μg/kg          |                                                                                                                                                                                                                                                                                                                                                                                                                             | <5.0                                                                                                                              |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                   |                                                             |                                                                       |
| μg/kg          |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                   |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                   |                                                             |                                                                       |
| μ <b>g/kg</b>  | ব                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                   | 3                                                                                                                                                                                                                              | ব                                                                                                                                                                                                                                                                                            | 3                                                 | ও                                                           |                                                                       |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                   |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                   |                                                             |                                                                       |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                   |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                   |                                                             |                                                                       |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                   |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                   |                                                             |                                                                       |
|                | 1                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                   |                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                     |                                                   |                                                             |                                                                       |
|                | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                                                                                                                       | <del></del>                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                              | <del> </del>                                      | <del></del>                                                 | <del></del>                                                           |
|                | Sample ID Sample Date Sample Time Sample Depth Laboratory Lab. Number Unita  µg/kg  µg/kg | Sample ID 1006262  Sample Date 08/08/1995  Sample Time 11:02  Sample Depth 0'-2'  Laboratory LEA  Lab. Number 95-00202-455  Units | Sample ID   1006262   1006263     Sample Date   08/08/1995   08/08/1995     Sample Time   11:02   10:57     Sample Depth   0' - 2'   2' - 4'     Laboratory   LEA   AEL     Lab. Number   95-00202-455   AEL95008789     Units | Sample ID   1006262   1006263   1006263     Sample Date   08/08/1995   08/08/1995   08/08/1995     Sample Time   11:02   10:57   10:57     Sample Depth   0' - 2'   2' - 4'   2' - 4'     Laboratory   LEA   AEL   LEA     Lab. Number   95-00202-455   AEL95008789   95-00203-456     Units | Sample ID   1006262   1006263   1006263   1006264 | Sample ID   1006262   1006263   1006263   1006264   1006265 | Sample ID   1006262   1006263   1006263   1006264   1006265   1006482 |

### Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 7 of 66

|                                      |              |             |             |               |                                         |                                                  |                                                  | Page 7 of 6                                      |
|--------------------------------------|--------------|-------------|-------------|---------------|-----------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
|                                      | Location ID  | NK-SB-219   | NK-SB-219   | NK-SB-219     | NK-SB-219                               | NK-SB-220                                        | NK-SB-220                                        | NK-SB-220                                        |
|                                      | Sample ID    | 1021748     | 1021749     | 1021749       | 1021750                                 | 1021751                                          | 1021751                                          | 1021752                                          |
|                                      | Sample Date  | 11/13/1996  | 11/13/1996  | 11/13/1996    | 11/13/1996                              | 11/13/1996                                       | 11/13/1996                                       | 11/13/1996                                       |
|                                      | Sample Time  | 09:45       | 09:55       | 09:55         | 10:05                                   | 10:15                                            | 10:15                                            | 10:25                                            |
|                                      | Sample Depth | 0' - 2'     | 2' - 4'     | 2' - 4'       | 4' - 6'                                 | 0' - 2'                                          | 0' - 2'                                          | 2' - 4'                                          |
|                                      | Laboratory   | LEA         | AEL         | LEA           | LEA                                     | AEL                                              | LEA                                              | AEL                                              |
|                                      | Lab. Number  | 96-5895-487 | AEL96013183 | 96-5896-488   | 96-5897-489                             | AEL96013184                                      | 96-5898-490                                      | AEL96013185                                      |
| Constituent                          | Units        |             |             |               |                                         |                                                  |                                                  |                                                  |
| Date Metals Analysed                 | •            |             |             |               |                                         |                                                  |                                                  |                                                  |
| Date Organics Analysed               | •            | 11/14/1996  |             | 11/14/1996    | 11/14/1996                              |                                                  | 11/14/1996                                       |                                                  |
| Date PCBs Analysed                   | -            |             |             |               |                                         |                                                  |                                                  |                                                  |
| Date Physical Analysed               | -            |             | 11/27/1996  |               |                                         | 11/27/1996                                       |                                                  | 11/27/1996                                       |
| Date Semi-volatile Organics Analysed | •            |             |             |               |                                         |                                                  |                                                  |                                                  |
| Arrenic                              | mg/kg        |             |             |               |                                         |                                                  |                                                  |                                                  |
| Barium                               | mg/kg        | T           |             |               |                                         |                                                  |                                                  |                                                  |
| Beryllium                            | mg/kg        | `           |             |               |                                         |                                                  |                                                  |                                                  |
| Cadmium                              | mg/kg        | T           |             |               |                                         |                                                  |                                                  |                                                  |
| Chromium                             | mg/kg        |             |             |               |                                         |                                                  |                                                  |                                                  |
| Chromium (Total)                     | mg/kg        |             |             |               |                                         |                                                  |                                                  |                                                  |
| Copper                               | mg/kg        |             |             |               |                                         |                                                  |                                                  |                                                  |
| Lead                                 | mg/kg        |             |             |               |                                         |                                                  |                                                  |                                                  |
| Mercury                              | mg/kg        | 1           |             |               |                                         |                                                  |                                                  |                                                  |
| Nickel                               | mg/kg        |             |             |               |                                         |                                                  |                                                  |                                                  |
| Selenium                             | mg/kg        |             |             |               |                                         |                                                  |                                                  |                                                  |
| Silver                               | mg/kg        |             |             |               |                                         |                                                  |                                                  |                                                  |
| Zinc                                 | mg/kg        | 1           |             |               |                                         |                                                  |                                                  |                                                  |
| PCB 1016                             | μg/kg        |             |             |               |                                         |                                                  |                                                  |                                                  |
| PCB 1221                             | μg/kg        | T           |             |               |                                         |                                                  |                                                  |                                                  |
| PCB 1232                             | μg/kg        |             |             | 1             |                                         |                                                  |                                                  |                                                  |
| PCB 1242                             | μg/kg        | T           |             |               |                                         |                                                  |                                                  |                                                  |
| PCB 1248                             | μg/kg        |             |             |               |                                         |                                                  |                                                  |                                                  |
| PCB 1254                             | μg/kg        | I           |             |               |                                         |                                                  |                                                  |                                                  |
| PCB 1260                             | μg/kg        |             |             |               |                                         |                                                  |                                                  |                                                  |
| Dibromo-3-chloropropane,1,2-         | μg/kg        | 1           |             | 1             | ·   · · · · · · · · · · · · · · · · · · |                                                  | <del>                                     </del> | - <del> </del>                                   |
| Total Petroleum Hydrocarbons         | mg/kg        | 1           | ⊲39.2       |               |                                         | ⊲35.1                                            | <del> </del>                                     | <38.4                                            |
| Acenaphthene                         | μg/kg        | 1           | 1           | <del> </del>  |                                         | <del>                                     </del> | <del>                                     </del> | <del>                                     </del> |
|                                      |              | †           | <del></del> | <del>- </del> | <del></del>                             | <del></del>                                      | <del></del>                                      | <del></del>                                      |

Notes: 1. Printed on 09/24/98

LEΔ

### Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 8 of 66

|                                 |                |             |             |             |             |             |             | Page 8 0    |
|---------------------------------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                                 | Location ID    | NK-SB-219   | NK-SB-219   | NK-SB-219   | NK-SB-219   | NK-SB-220   | NK-SB-220   | NK-SB-220   |
|                                 | Sample ID      | 1021748     | 1021749     | 1021749     | 1021750     | 1021751     | 1021751     | 1021752     |
|                                 | Sample Date    | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  |
|                                 | Sample Time    | 09:45       | 09:55       | 09:55       | 10:05       | 10:15       | 10:15       | 10:25       |
|                                 | Sample Depth   | 0' - 2'     | 2' - 4'     | 2' - 4'     | 4' - 6'     | 0' - 2'     | 0' - 2'     | 2' - 4'     |
|                                 | Laboratory     | LEA         | AEL         | LEA         | LEA         | AEL         | LEA         | AEL         |
|                                 | Lab, Number    | 96-5895-487 | AEL96013183 | 96-5896-488 | 96-5897-489 | AEL96013184 | 96-5898-490 | AEL96013185 |
| Constituent                     | Units          |             |             |             |             |             |             |             |
| Acenaphthylene                  | μg/kg          |             |             |             |             |             |             |             |
| Anthracene                      | μg/kg          |             |             |             |             |             |             |             |
| Benzidine                       | μg/kg          |             |             |             |             |             |             |             |
| Benzo[a]anthracene              | μ <b>g/k</b> g |             |             |             |             |             |             |             |
| Benzo[a]pyrene                  | μg/kg          |             |             |             |             |             |             |             |
| Benzo[b]fluoranthene            | μ <b>g/k</b> g |             |             |             |             |             |             |             |
| Benzo[ghi]perylene              | μg/kg          |             |             |             |             |             |             |             |
| Benzo[k]fluoranthene            | μg/kg          |             |             |             |             |             |             |             |
| Bis(2-chloroethoxy)methane      | μg/kg          |             |             |             |             |             |             |             |
| Bis(2-chloroethyl)ether         | μ <b>g/kg</b>  |             |             |             |             |             |             |             |
| Bis(2-ethylhexyl)phthalate      | μ <b>g/kg</b>  |             |             |             |             |             |             |             |
| Bromophenyl Phenyl Ether,4-     | μg/kg          |             |             |             |             |             |             |             |
| Butyl Benzyl Phthalate          | μg/kg          |             |             |             |             |             |             |             |
| Carbazole                       | μg/kg          |             |             |             |             |             |             |             |
| Chloroaniline,4-                | μg/kg          |             |             |             |             |             |             |             |
| Chloronaphthalene,2-            | μg/kg          |             |             |             |             |             |             |             |
| Chlorophenol,2-                 | μg/kg          |             |             |             |             |             |             |             |
| Chlorophenyl Phenyl Ether,4-    | μg/kg          |             |             | 1           |             |             |             |             |
| Chrysene                        | μg/kg          |             |             |             |             |             |             |             |
| Cresol,2-                       | μ <b>g/kg</b>  |             |             |             |             |             |             |             |
| Cresol,4-                       | μg/kg          |             |             |             |             |             |             |             |
| Di-n-butyl Phthalate            | μg/kg          | 1           |             |             |             |             |             |             |
| Di-n-octyl Phthalate            | μg/kg          |             |             |             |             |             |             |             |
| Dibenzo[a,h]anthracene          | μg/kg          |             |             |             |             |             |             |             |
| Dibenzofuran                    | μg/kg          |             |             |             |             |             |             |             |
| Dichloro-2-butylene, 1,4-trans- | μg/kg          |             |             |             |             |             |             |             |
| Dichlorobenzidine,3,3'-         | μg/kg          |             |             |             |             |             |             |             |
| Dichlorophenol,2,4-             | μg/kg          | 1           |             | 1           | ·           |             |             |             |

### Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 9 of 66

|                           |                |             |             |             |             |             |             | Page 9 of   |
|---------------------------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                           | Location ID    | NK-SB-219   | NK-SB-219   | NK-SB-219   | NK-SB-219   | NK-SB-220   | NK-SB-220   | NK-SB-220   |
|                           | Sample ID      | 1021748     | 1021749     | 1021749     | 1021750     | 1021751     | 1021751     | 1021752     |
|                           | Sample Date    | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  |
|                           | Sample Time    | 09:45       | 09:55       | 09:55       | 10:05       | 10:15       | 10:15       | 10:25       |
|                           | Sample Depth   | 0' - 2'     | 2' - 4'     | 2' - 4'     | 4' - 6'     | 0' - 2'     | 0' - 2'     | 2' - 4'     |
|                           | Laboratory     | LEA         | AEL         | LEA         | LEA         | AEL         | LEA         | AEL         |
|                           | Lab. Number    | 96-5895-487 | AEL96013183 | 96-5896-488 | 96-5897-489 | AEL96013184 | 96-5898-490 | AEL96013185 |
| Constituent               | Units          |             |             |             |             |             |             |             |
| Disthyl Phthalate         | μg/kg          |             |             |             |             |             |             |             |
| Dimethyl Phthalate        | μ <b>g/kg</b>  |             |             |             |             |             |             |             |
| Dimethylphenol,2,4-       | μg/kg          |             |             |             |             |             |             |             |
| Dinitro-o-cresol, 4,6-    | μg/kg          |             |             |             |             |             |             |             |
| Dinitrophenol,2,4-        | μg/kg          |             |             |             |             |             |             |             |
| Dinitrotoluene,2,4-       | μ <b>g/k</b> g |             |             |             |             |             |             |             |
| Dinitrotohuene,2,6-       | μg/kg          |             |             |             |             |             |             |             |
| Diphenylhydrazine,1,2-    | μ <b>g/kg</b>  |             |             |             |             |             |             |             |
| Fluoranthene              | μg/kg          |             |             |             |             |             |             |             |
| Phiorege                  | μ <b>g/k</b> g |             |             |             |             |             |             |             |
| Hexachlorobenzene         | μg/kg          |             |             |             |             |             |             |             |
| Hexachlorobutadiene       | μg/kg          |             |             |             |             |             |             |             |
| Hexachlorocyclopentadiene | μg/kg          |             |             |             |             |             |             |             |
| Hexachloroethane          | μg/kg          |             |             |             |             |             |             |             |
| Indeno(1,2,3-cd)pyrene    | μ <b>g/kg</b>  |             |             |             |             |             |             |             |
| Isophorone                | μg/kg          |             |             |             |             |             |             |             |
| Methylnaphthalene,2-      | μg/kg          |             |             |             |             |             |             |             |
| N-nitrosodi-n-propylamine | μg/kg          |             |             |             |             |             |             |             |
| N-nitrosodimethylamine    | μ <b>g/kg</b>  |             |             |             |             |             |             |             |
| N-nitrosodiphenylamine    | μg/kg          |             |             |             |             |             |             |             |
| Naphthalene               | μg/kg          |             |             |             |             |             |             |             |
| Nitroaniline,2-           | μg/kg          |             |             |             |             |             |             |             |
| Nitroaniline,3-           | μg/kg          |             |             |             |             |             |             |             |
| Nitroaniline,4-           | μ <b>g/kg</b>  |             |             |             |             |             |             |             |
| Nitrobenzene              | μg/kg          |             |             |             |             |             |             |             |
| Nitrophenol,2-            | μ <b>g/kg</b>  |             |             |             |             |             |             |             |
| Nitrophenol,4-            | μg/kg          |             | T           |             |             |             |             |             |
| Pentachlorophenol         | μg/kg          | 1           |             |             |             |             |             |             |

# Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 10 of 66

| Page 10 of o                          |             |             |             |             |             |             |               |                                                  |
|---------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------|--------------------------------------------------|
| NK-SB-220                             | NK-SB-220   | NK-SB-220   | NK-SB-219   | NK-SB-219   | NK-SB-219   | NK-SB-219   | Location ID   |                                                  |
| 1021752                               | 1021751     | 1021751     | 1021750     | 1021749     | 1021749     | 1021748     | Sample ID     |                                                  |
| 11/13/1996                            | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | Sample Date   |                                                  |
| 10:25                                 | 10:15       | 10:15       | 10:05       | 09:55       | 09:55       | 09:45       | Sample Time   |                                                  |
| 2' - 4'                               | 0' - 2'     | 0' - 2'     | 4' - 6'     | 2' - 4'     | 2' - 4'     | 0' - 2'     | Sample Depth  |                                                  |
| AEL                                   | LEA         | AEL         | LEA         | LEA         | AEL         | LEA         | Laboratory    |                                                  |
| AEL96013185                           | 96-5898-490 | AEL96013184 | 96-5897-489 | 96-5896-488 | AEL96013183 | 96-5895-487 | Lab. Number   |                                                  |
|                                       | 1           |             |             |             |             |             | Units         | Constituent                                      |
|                                       |             |             |             |             |             |             | μ <b>g/kg</b> | Phenanthrene                                     |
|                                       |             |             |             |             |             |             | μg/kg         | Phenol                                           |
|                                       |             |             |             |             |             |             | μg/kg         | Propane),2,2'-oxybis(2-chloro-                   |
|                                       |             |             |             |             |             |             | μg/kg         | Pyrene                                           |
|                                       |             |             | ,           |             |             |             | μg/kg         | Trichlorobenzene, 1, 2, 4-                       |
|                                       |             |             |             |             |             |             | μg/kg         | Trichlorophenol,2,4,5-                           |
|                                       |             |             |             |             |             |             | μg/kg         | Trichlorophenol,2,4,6-                           |
|                                       |             |             |             |             |             |             | μg/kg         | Acetone                                          |
|                                       |             |             |             |             |             |             | μg/kg         | Acetonitrile                                     |
|                                       |             |             |             |             |             |             | μg/kg         | Acrolein                                         |
|                                       |             |             |             |             |             |             | μg/kg         | Acrylonitrile                                    |
|                                       |             |             |             |             |             |             | μg/kg         | Allyl Chloride                                   |
|                                       |             |             |             |             |             |             | μg/kg         | Benzene                                          |
|                                       | <7          |             | <8          | <6          |             | <8          | μg/kg         | Benzene (screening)                              |
|                                       |             |             |             |             |             |             | μg/kg         | Bromobenzene                                     |
| · · · · · · · · · · · · · · · · · · · |             |             |             |             |             |             | μg/kg         | Bromoform                                        |
|                                       |             |             |             |             |             |             | μg/kg         | Carbon Disulfide                                 |
| <del></del>                           |             |             |             |             |             |             | μg/kg         | Carbon Tetrachloride                             |
|                                       |             |             |             |             |             |             | μg/kg         | Chlorobenzene                                    |
|                                       |             |             |             |             |             |             | μg/kg         | Chlorodibromomethane                             |
|                                       |             |             |             |             |             |             | μg/kg         | Chloroethane                                     |
|                                       |             |             |             |             |             |             | μg/kg         | Chloroethyl Vinyl Ether,2-                       |
|                                       |             |             |             |             |             |             | μg/kg         | Chloroform                                       |
|                                       |             |             |             |             |             |             | μg/kg         | Chloroprene, beta-                               |
|                                       |             |             |             |             |             |             | μg/kg         | Chlorotoluene,o-                                 |
|                                       |             |             |             |             |             |             | μg/kg         | Chlorotoluene,p-                                 |
|                                       |             |             |             |             |             |             | μg/kg         | Dibromomethane                                   |
|                                       |             |             |             |             |             |             |               | Dichlorobenzene, 1,2-                            |
|                                       |             |             |             |             |             |             | hake<br>hake  | Chlorotoluene,o- Chlorotoluene,p- Dibromomethane |

#### Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

|                               | <del></del>    | Y           | 7:          | T           |             |             | 1           | Page 11 c    |
|-------------------------------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|
|                               | Location ID    | NK-SB-219   | NK-SB-219   | NK-SB-219   | NK-SB-219   | NK-SB-220   | NK-SB-220   | NK-SB-220    |
|                               | Sample ID      | 1021748     | 1021749     | 1021749     | 1021750     | 1021751     | 1021751     | 1021752      |
|                               | Sample Date    | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996   |
|                               | Sample Time    | 09:45       | 09:55       | 09:55       | 10:05       | 10:15       | 10:15       | 10:25        |
|                               | Sample Depth   | 0' - 2'     | 2' - 4'     | 2' - 4'     | 4' - 6'     | 0' - 2'     | 0' - 2'     | 2' - 4'      |
|                               | Laboratory     | LEA         | AEL         | LEA         | LEA         | AEL         | LEA         | AEL          |
|                               | Lab. Number    | 96-5895-487 | AEL96013183 | 96-5896-488 | 96-5897-489 | AEL96013184 | 96-5898-490 | AEL96013185  |
| Constituent                   | Units          |             |             |             |             |             |             |              |
| Dichlorobenzene, 1,3-         | μg/kg          |             |             |             |             |             |             |              |
| Dichlorobenzene, 1,4-         | μ <b>g/kg</b>  |             |             |             |             |             |             |              |
| Dichlorobromomethane          | μ <b>g/kg</b>  |             |             |             |             |             |             |              |
| Dichlorodifluoromethane       | μ <b>g/kg</b>  |             |             |             |             |             |             |              |
| Dichloroethane,1,1-           | μ <b>g/kg</b>  |             |             |             |             |             |             |              |
| Dichloroethane,1,2-           | μg/kg          |             |             |             |             |             |             |              |
| Dichloroethylene, l, l-       | μg/kg          |             |             |             |             |             |             |              |
| Dichloroethylene, 1,2-        | μg/kg          |             |             |             |             |             |             |              |
| Dichloroethylene, 1,2-cis-    | μg/kg          |             |             | Ī           |             |             |             |              |
| Dichloroethylene, 1,2-trans-  | μg/kg          |             |             |             |             |             |             |              |
| Dichloropropane, 1,2-         | μ <b>g/kg</b>  |             |             |             |             |             |             |              |
| Dichloropropylene, 1,3-       | μ <b>g/</b> kg |             |             |             |             |             |             |              |
| Dichloropropylene,1,3-cis-    | μ <b>g/k</b> g |             |             |             |             |             |             |              |
| Dichloropropylene, 1,3-trans- | μ <b>g/kg</b>  |             |             |             |             |             |             |              |
| Dioxane,1,4-                  | μg/kg          |             |             |             |             |             |             |              |
| Ethyl Methacrylate            | μg/kg          |             |             |             |             |             |             |              |
| Ethylbenzene                  | μ <b>g/kg</b>  |             |             |             |             |             |             |              |
| Ethylbenzene (screening)      | μg/kg          | <16         |             | <14         | <17         |             | <16         |              |
| Ethylene Dibromide            | μg/kg          |             |             |             |             |             | •           |              |
| Hexanone,2-                   | μg/kg          |             |             |             |             |             |             |              |
| [odomethane                   | μg/kg          |             |             |             |             |             |             |              |
| Isobutyl Alcohol              | μg/kg          | 1           |             |             |             |             |             |              |
| Methacrylonitrile             | μg/kg          | T           |             |             |             |             |             | 1            |
| Methyl Bromide                | μg/kg          |             |             |             |             |             |             |              |
| Methyl Chloride               | μg/kg          |             |             | 1           |             |             |             |              |
| Methyl Ethyl Ketone           | μg/kg          |             |             | 1           | <u> </u>    |             |             |              |
| Methyl Methacrylate           | μg/kg          | <u> </u>    |             | †           | <del></del> |             |             | <del> </del> |
| Methyl-2-pentanone,4-         | μg/kg          | 1           | <u> </u>    |             |             |             |             |              |

LEA

### Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 12 of 66

|                                       |               |             |             |             |             |             |             | Page 12 of  |
|---------------------------------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                                       | Location ID   | NK-SB-219   | NK-SB-219   | NK-SB-219   | NK-SB-219   | NK-SB-220   | NK-SB-220   | NK-SB-220   |
|                                       | Sample ID     | 1021748     | 1021749     | 1021749     | 1021750     | 1021751     | 1021751     | 1021752     |
|                                       | Sample Date   | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  |
|                                       | Sample Time   | 09:45       | 09:55       | 09:55       | 10:05       | 10:15       | 10:15       | 10:25       |
|                                       | Sample Depth  | 0' - 2'     | 2' - 4'     | 2' - 4'     | 4' - 6'     | 0' - 2'     | 0' - 2'     | 2' - 4'     |
|                                       | Laboratory    | LEA         | AEL         | LEA         | LEA         | AEL         | LEA         | AEL         |
|                                       | Lab. Number   | 96-5895-487 | AEL96013183 | 96-5896-488 | 96-5897-489 | AEL96013184 | 96-5898-490 | AEL96013185 |
| Constituent                           | Units         |             |             |             |             |             |             |             |
| Methyl-tert-butyl Ether               | μg/kg         |             |             |             |             |             | <u>_</u>    |             |
| Methylene Chloride                    | μg/kg         |             |             |             |             |             |             |             |
| Propionitrile                         | μg/kg         |             |             |             |             |             |             |             |
| Styrene                               | μ <b>g/kg</b> |             |             |             |             |             |             |             |
| Tetrachloroethane, 1, 1, 1, 2-        | μg/kg         |             |             |             |             |             |             |             |
| Tetrachloroethane, 1, 1, 2, 2-        | μ <b>g/kg</b> |             |             |             |             |             |             |             |
| Tetrachloroethylene                   | μ <b>g/kg</b> |             |             |             |             |             |             |             |
| Tetrachloroethylene (screening)       | μ <b>g/kg</b> | <20         |             | <17         | <22         |             | <20         |             |
| Toluene                               | μ <b>g/kg</b> |             |             |             |             |             |             |             |
| Toluene (acreening)                   | μg/kg         | <11         |             | <10         | <12         |             | <11         |             |
| Trichloroethane, 1, 1, 1-             | μg/ <b>kg</b> |             |             |             |             |             |             |             |
| Trichloroethane, 1, 1, 1- (screening) | μ <b>g/kg</b> | <203        |             | <170        | <215        |             | <199        |             |
| Trichloroethane, 1, 1, 2-             | μg/kg         |             |             |             |             |             |             |             |
| Trichloroethylene                     | μg/kg         |             |             |             |             |             |             |             |
| Trichloroethylene (screening)         | μg/kg         | <20         |             | <17         | <21         |             | <20         |             |
| Trichloromonofluoromethane            | μg/kg         |             |             |             |             |             |             |             |
| Trichloropropane, 1,2,3-              | μg/kg         |             |             |             |             |             |             |             |
| Vinyl Acetate                         | μg/kg         |             |             |             |             |             |             |             |
| Vinyl Chloride                        | μg/kg         |             |             |             |             |             |             |             |
| Xylene,o- (screening)                 | μg/kg         |             |             |             |             |             |             |             |
| Xylenes (Total)                       | μg/kg         |             |             |             |             |             |             |             |
| Xylenes (Total) (screening)           | μg/kg         | <32         |             | <27         | <34         |             | <32         |             |
| Xylenes,m- & p- (screening)           | μg/kg         |             |             |             |             |             |             |             |
|                                       |               |             |             |             |             |             |             |             |
|                                       |               |             |             |             |             |             |             |             |
|                                       |               |             |             |             |             |             |             |             |
|                                       |               |             |             |             |             |             |             |             |
|                                       |               |             |             |             |             |             |             |             |

### Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 13 of 66

|                                      |               |             |             |             |             |             |             | Page 13 of 60 |
|--------------------------------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------|
|                                      | Location ID   | NK-SB-220   | NK-SB-220   | NK-SB-221   | NK-SB-221   | NK-SB-221   | NK-SB-221   | NK-SB-221     |
|                                      | Sample ID     | 1021752     | 1021753     | 1021754     | 1021754     | 1021755     | 1021755     | 1021756       |
|                                      | Sample Date   | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996    |
|                                      | Sample Time   | 10:25       | 10:35       | 10:45       | 10:45       | 10:55       | 10:55       | 11:05         |
|                                      | Sample Depth  | 2' - 4'     | 4' - 6'     | 0' - 2'     | 0' - 2'     | 2' - 4'     | 2' - 4'     | 2' - 4'       |
|                                      | Laboratory    | LEA         | LEA         | AEL         | LEA         | AEL         | LEA         | AEL           |
|                                      | Lab. Number   | 96-5902-494 | 96-5903-495 | AEL96013186 | 96-5904-496 | AEL96013187 | 96-5906-498 | AEL96013188   |
| Constituent                          | Units         |             |             |             |             |             |             |               |
| Date Metals Analysed                 | •             |             |             |             |             |             |             |               |
| Date Organics Analysed               | -             | 11/14/1996  | 11/14/1996  |             | 11/14/1996  |             | 11/14/1996  |               |
| Date PCBs Analysed                   | -             |             |             |             |             |             |             |               |
| Date Physical Analysed               | •             |             |             | 11/27/1996  |             | 12/03/1996  |             | 12/03/1996    |
| Date Semi-volatile Organics Analysed | -             |             |             |             |             |             |             |               |
| Arsenic                              | mg/kg         |             |             |             |             |             |             |               |
| Barium                               | mg/kg         |             |             |             |             |             |             |               |
| Beryllium                            | mg/kg         |             |             |             |             |             |             |               |
| Cadmium                              | mg/kg         |             |             |             |             |             |             |               |
| Chromium                             | mg/kg         |             |             |             |             |             |             |               |
| Chromium (Total)                     | mg/kg         |             |             |             |             |             |             |               |
| Copper                               | mg/kg         |             |             |             |             |             |             |               |
| Lead                                 | mg/kg         |             |             |             |             |             |             |               |
| Mercury                              | mg/kg         |             |             |             |             |             |             |               |
| Nickel                               | mg/kg         |             |             |             |             |             |             |               |
| Selenium                             | mg/kg         |             |             |             |             |             |             |               |
| Silver                               | mg/kg         |             |             |             | 1           |             |             |               |
| Zinc                                 | mg/kg         |             |             |             |             |             |             |               |
| PCB 1016                             | μg/kg         |             |             |             |             |             |             |               |
| PCB 1221                             | μ <b>g/kg</b> |             |             |             |             |             |             |               |
| PCB 1232                             | μg/kg         |             |             |             |             |             |             |               |
| PCB 1242                             | μg/kg         |             |             |             |             |             |             |               |
| PCB 1248                             | μg/kg         |             |             |             |             |             |             |               |
| PCB 1254                             | μ <b>g/kg</b> |             |             |             |             |             |             |               |
| PCB 1260                             | μg/kg         | ]           |             |             |             |             |             |               |
| Dibromo-3-chloropropane,1,2-         | μ <b>g/kg</b> |             |             |             |             |             |             | 1             |
| Total Petroleum Hydrocarbons         | mg/kg         |             |             | 71.5        |             | <36.6       |             | <37.3         |
| Acenaphthene                         | μg/kg         |             |             |             | 1           |             |             | 1             |

### Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 14 of 66

|                                 |                |             |             |             |             |             |             | Page 14 of 6 |
|---------------------------------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|
|                                 | Location ID    | NK-SB-220   | NK-SB-220   | NK-SB-221   | NK-SB-221   | NK-SB-221   | NK-SB-221   | NK-SB-221    |
|                                 | Sample ID      | 1021752     | 1021753     | 1021754     | 1021754     | 1021755     | 1021755     | 1021756      |
|                                 | Sample Date    | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996   |
|                                 | Sample Time    | 10:25       | 10:35       | 10:45       | 10:45       | 10:55       | 10:55       | 11:05        |
|                                 | Sample Depth   | 2' - 4'     | 4' - 6'     | 0' - 2'     | 0' - 2'     | 2' - 4'     | 2' - 4'     | 2' - 4'      |
|                                 | Laboratory     | LEA         | LEA         | AEL         | LEA         | AEL         | LEA         | AEL          |
|                                 | Lab. Number    | 96-5902-494 | 96-5903-495 | AEL96013186 | 96-5904-496 | AEL96013187 | 96-5906-498 | AEL96013188  |
| Constituent                     | Units          |             |             |             |             |             |             |              |
| Acenaphthylene                  | μ <b>g/k</b> g |             |             |             |             |             |             |              |
| Anthracene                      | μg/kg          |             |             |             |             |             |             |              |
| Benzidine                       | μg/kg          |             |             |             |             |             |             |              |
| Benzo[a]anthracene              | μg/kg          |             |             |             |             |             |             |              |
| Benzo[a]pyrene                  | μg/kg          |             |             |             |             |             |             |              |
| Benzo[b]fluoranthene            | μg/kg          |             |             |             |             |             |             |              |
| Benzo[ghi]perylene              | μ <b>g/kg</b>  |             |             |             |             |             |             |              |
| Benzo[k]fluoranthene            | μ <b>g/kg</b>  |             |             |             |             |             |             |              |
| Bis(2-chloroethoxy)methane      | μg/kg          |             |             |             |             |             |             |              |
| Bis(2-chloroethyl)ether         | µg/kg          |             |             |             |             |             |             |              |
| Bis(2-ethylhexyl)phthalate      | μg/kg          |             |             |             |             |             |             |              |
| Bromophenyl Phenyl Ether,4-     | μ <b>g/k</b> g |             |             |             |             |             |             |              |
| Butyl Benzyl Phthalate          | μg/kg          |             |             |             |             |             |             |              |
| Carbazole                       | μg/kg          |             |             |             |             |             |             |              |
| Chloroaniline,4-                | μg/kg          |             |             |             |             |             |             |              |
| Chloronaphthalene,2-            | μg/kg          |             |             |             |             |             |             |              |
| Chiorophenol,2-                 | μg/kg          |             |             |             |             |             |             |              |
| Chlorophenyl Phenyl Ether,4-    | μ <b>g/k</b> g |             |             |             |             |             |             |              |
| Chrysene                        | μg/kg          |             |             |             |             |             |             |              |
| Cresol,2-                       | μg/kg          |             |             |             |             |             |             |              |
| Cresol,4-                       | μg/kg          |             |             |             |             |             |             |              |
| Di-n-butyl Phthalate            | μg/kg          |             |             |             |             |             |             |              |
| Di-n-octyl Phthalate            | μg/kg          |             |             |             |             |             |             |              |
| Dibenzo[a,h]anthracene          | μg/kg          |             |             |             |             |             |             |              |
| Dibenzofuran                    | μg/kg          |             |             |             |             |             |             |              |
| Dichloro-2-butylene, 1,4-trans- | μ <b>g/kg</b>  |             |             |             |             |             |             |              |
| Dichlorobenzidine,3,3'-         | μg/kg          |             |             |             |             |             |             |              |
| Dichlorophenol, 2, 4-           | μg/kg          |             |             |             |             |             |             |              |
| (store 1 Printed on 00/24/09    |                |             |             |             |             |             |             |              |

### Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 15 of 66

|                           |                |             |             |             |             |             |             | Page 15 of  |
|---------------------------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                           | Location ID    | NK-SB-220   | NK-SB-220   | NK-SB-221   | NK-SB-221   | NK-SB-221   | NK-SB-221   | NK-SB-221   |
|                           | Sample ID      | 1021752     | 1021753     | 1021754     | 1021754     | 1021755     | 1021755     | 1021756     |
|                           | Sample Date    | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  |
|                           | Sample Time    | 10:25       | 10:35       | 10:45       | 10:45       | 10:55       | 10:55       | 11:05       |
|                           | Sample Depth   | 2' - 4'     | 4' - 6'     | 0' - 2'     | 0' - 2'     | 2' - 4'     | 2' - 4'     | 2' - 4'     |
|                           | Laboratory     | LEA         | LEA         | AEL         | LEA         | AEL         | LEA         | AEL         |
|                           | Lab. Number    | 96-5902-494 | 96-5903-495 | AEL96013186 | 96-5904-496 | AEL96013187 | 96-5906-498 | AEL96013188 |
| Constituent               | Units          |             |             |             | <u> </u>    |             |             |             |
| Diethyl Phthalate         | μg/kg          |             |             |             |             |             |             |             |
| Dimethyl Phthalate        | μg/kg          |             |             |             |             |             |             |             |
| Dimethylphenol,2,4-       | μg/kg          |             |             |             |             |             |             |             |
| Dinitro-o-cresol,4,6-     | μg/kg          |             |             |             |             |             |             |             |
| Dinitrophenol,2,4-        | μg/kg          |             |             |             |             |             |             |             |
| Dinitrotoluene,2,4-       | μg/kg          |             |             |             |             |             |             |             |
| Dinitrotoluene,2,6-       | μg/kg          |             |             |             |             |             |             |             |
| Diphenylhydrazine, 1,2-   | μg/kg          |             |             |             |             |             |             |             |
| Fluoranthene              | μ <b>g/kg</b>  |             |             |             |             |             |             |             |
| Fluorene                  | μg/kg          |             |             |             |             |             |             |             |
| Hexachlorobenzene         | μg/kg          |             |             |             | T           |             |             |             |
| Hexachlorobutadiene       | µg/kg          | ,           |             |             |             |             |             |             |
| Hexachlorocyclopentadiene | μg/kg          |             |             |             |             |             |             |             |
| Hexachloroethane          | μg/kg          |             |             |             |             |             |             |             |
| Indeno(1,2,3-cd)pyrene    | μg/kg          | Ţ           |             |             |             |             |             |             |
| Isophorone                | μg/kg          |             |             |             |             |             |             | 1           |
| Methylnaphthalene,2-      | μg/kg          |             |             |             |             |             |             |             |
| N-nitrosodi-n-propylamine | μg/kg          |             |             |             |             |             |             |             |
| N-nitrosodimethylamine    | μg/kg          |             |             |             |             |             |             |             |
| N-nitrosodiphenylamine    | μg/kg          |             |             |             |             |             |             |             |
| Naphthalene               | μg/kg          |             |             |             |             |             |             |             |
| Nitroaniline,2-           | μ <b>g/kg</b>  |             |             |             |             |             |             |             |
| Nitroaniline,3-           | μg/kg          |             |             |             |             |             |             |             |
| Nitroaniline,4-           | μg/kg          |             |             |             |             |             |             |             |
| Nitrobenzene              | μ <b>g/k</b> g |             |             |             |             |             |             |             |
| Nitrophenol,2-            | μg/kg          |             |             |             |             |             |             |             |
|                           |                |             |             |             | <del></del> | <del></del> | <del></del> | <del></del> |
| Nitrophenol,4-            | μg/kg          |             |             |             |             |             |             |             |

### Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 16 of 66

|                                |                |             |             |             |             |             |             | Page 16 of  |
|--------------------------------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                                | Location ID    | NK-SB-220   | NK-SB-220   | NK-SB-221   | NK-SB-221   | NK-SB-221   | NK-SB-221   | NK-SB-221   |
|                                | Sample ID      | 1021752     | 1021753     | 1021754     | 1021754     | 1021755     | 1021755     | 1021756     |
|                                | Sample Date    | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  |
|                                | Sample Time    | 10:25       | 10:35       | 10:45       | 10:45       | 10:55       | 10:55       | 11:05       |
|                                | Sample Depth   | 2' - 4'     | 4' - 6'     | 0' - 2'     | 0' - 2'     | 2' - 4'     | 2' - 4'     | 2' - 4'     |
|                                | Laboratory     | LEA         | LEA         | AEL         | LEA         | AEL         | LEA         | AEL         |
|                                | Lab. Number    | 96-5902-494 | 96-5903-495 | AEL96013186 | 96-5904-496 | AEL96013187 | 96-5906-498 | AEL96013188 |
| Constituent                    | Units          |             |             |             |             |             |             |             |
| Phenanthrene                   | μ <b>g/k</b> g |             |             |             |             |             |             |             |
| Phenol                         | μg/kg          |             |             |             |             |             |             |             |
| Propane),2,2'-oxybis(2-chloro- | μ <b>g/kg</b>  |             |             |             |             |             |             |             |
| Pyrene                         | μg/kg          |             |             |             |             |             |             |             |
| Trichlorobenzene, 1, 2, 4-     | μ <b>g/kg</b>  |             |             |             |             |             |             |             |
| Trichlorophenol,2,4,5-         | μg/kg          |             |             |             |             |             |             |             |
| Trichlorophenol,2,4,6-         | μg/kg          |             |             |             |             |             |             |             |
| Acetone                        | μ <b>g/kg</b>  |             |             |             |             |             |             |             |
| Acetonitrile                   | μg/kg          |             |             |             |             |             |             |             |
| Acrolein                       | μg/kg          |             |             |             |             |             |             |             |
| Acrylonitrile                  | μg/kg          |             |             |             |             |             |             |             |
| Allyl Chloride                 | μ <b>g/kg</b>  |             |             |             |             |             |             |             |
| Benzene                        | μg/kg          |             |             |             |             |             |             |             |
| Benzene (screening)            | μg/kg          | <8          | <8          |             | <8 nc       |             | <8          |             |
| Bromobenzene                   | μg/kg          |             |             |             |             |             |             |             |
| Bromoform                      | μg/kg          |             |             |             |             |             |             |             |
| Carbon Disulfide               | μ <b>g/k</b> g |             |             |             |             |             |             |             |
| Carbon Tetrachloride           | μ <b>g/kg</b>  |             |             |             |             |             |             |             |
| Chlorobenzene                  | μg/kg          |             |             |             |             |             |             |             |
| Chlorodibromomethane           | μg/kg          |             |             |             |             |             |             |             |
| Chloroethane                   | μg/kg          |             |             |             |             |             |             |             |
| Chloroethyl Vinyl Ether,2-     | μg/kg          |             |             |             |             |             |             |             |
| Chloroform                     | μg/kg          |             |             |             |             |             |             |             |
| Chloroprene, beta-             | μg/kg          |             |             |             |             |             |             |             |
| Chlorotoluene,o-               | μg/kg          |             |             |             |             |             |             |             |
| Chlorotoluene,p-               | μg/kg          |             |             |             |             |             |             |             |
| Dibromomethane                 | μg/kg          |             |             |             |             |             |             |             |
| Dichlorobenzene,1,2-           | μg/kg          |             |             |             | -           |             |             |             |
|                                |                |             |             |             |             |             | <u> </u>    |             |



### Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 17 of 66

|                               |                |             |             |             |             |             |             | Page 17 of  |
|-------------------------------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                               | Location ID    | NK-SB-220   | NK-SB-220   | NK-SB-221   | NK-SB-221   | NK-SB-221   | NK-SB-221   | NK-SB-221   |
|                               | Sample ID      | 1021752     | 1021753     | 1021754     | 1021754     | 1021755     | 1021755     | 1021756     |
|                               | Sample Date    | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  |
|                               | Sample Time    | 10:25       | 10:35       | 10:45       | 10:45       | 10:55       | 10:55       | 11:05       |
|                               | Sample Depth   | 2' - 4'     | 4' - 6'     | 0' - 2'     | 0' - 2'     | 2' - 4'     | 2' - 4'     | 2' - 4'     |
|                               | Laboratory     | LEA         | LEA         | AEL         | LEA         | AEL         | LEA         | AEL         |
|                               | Lab. Number    | 96-5902-494 | 96-5903-495 | AEL96013186 | 96-5904-496 | AEL96013187 | 96-5906-498 | AEL96013188 |
| Constituent                   | Units          |             |             |             |             |             |             |             |
| Dichlorobenzene, 1,3-         | μg/kg          |             |             |             |             |             |             |             |
| Dichlorobenzene,1,4-          | μ <b>g/kg</b>  |             |             |             |             |             |             |             |
| Dichlorobromomethane          | μ <b>g/kg</b>  |             |             |             |             |             |             |             |
| Dichlorodifluoromethane       | μg/kg          |             |             |             |             |             |             |             |
| Dichloroethane,1,1-           | μ <b>g/k</b> g |             |             |             |             |             |             |             |
| Dichloroethane,1,2-           | μ <b>g/kg</b>  |             |             |             |             |             |             |             |
| Dichloroethylene, 1, 1-       | μg/kg          |             |             |             |             |             |             |             |
| Dichloroethylene, 1,2-        | μg/kg          |             |             |             |             |             |             |             |
| Dichloroethylene, 1,2-cis-    | μg/kg          |             |             |             |             |             |             |             |
| Dichloroethylene, 1,2-trans-  | μ <b>g/kg</b>  |             |             |             |             |             |             |             |
| Dichloropropane, 1,2-         | μg/kg          |             |             |             |             |             |             |             |
| Dichloropropylene,1,3-        | μg/kg          |             |             |             |             |             |             |             |
| Dichloropropylene, 1, 3-cis-  | μ <b>g/kg</b>  |             |             |             |             |             |             |             |
| Dichloropropylene, 1,3-trans- | μ <b>g/kg</b>  |             |             |             |             |             |             |             |
| Dioxane,1,4-                  | μ <b>g/kg</b>  |             |             |             |             |             |             |             |
| Ethyl Methacrylate            | μ <b>g/kg</b>  | T           |             |             |             |             |             |             |
| Ethylbenzene                  | μ <b>g/kg</b>  |             |             |             |             |             |             |             |
| Ethylbenzene (screening)      | μ <b>g/k</b> g | <17         | <16         |             | <18 nc      |             | <17         |             |
| Ethylene Dibromide            | μg/kg          |             |             |             |             |             |             |             |
| Hexanone,2-                   | μ <b>g/kg</b>  |             |             |             |             |             |             |             |
| Iodomethane                   | μg/kg          |             |             |             |             |             |             |             |
| Isobutyi Alcohol              | μg/kg          |             |             |             |             |             |             |             |
| Methacrylonitrile             | μg/kg          |             |             |             |             |             |             |             |
| Methyl Bromide                | μg/kg          |             |             |             |             |             |             |             |
| Methyl Chloride               | μg/kg          |             |             |             |             |             |             |             |
| Methyl Ethyl Ketone           | μ <b>g/kg</b>  |             |             |             |             |             |             |             |
| Methyl Methacrylate           | μg/kg          |             |             |             |             |             |             |             |
| Methyl-2-pentanone,4-         | μg/kg          |             |             |             |             |             |             |             |
|                               |                |             |             |             |             |             |             |             |

### Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 18 of 66

|                                       |               |             |             |             |             |             |             | Page 18 c   |
|---------------------------------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                                       | Location ID   | NK-SB-220   | NK-SB-220   | NK-SB-221   | NK-SB-221   | NK-SB-221   | NK-SB-221   | NK-SB-221   |
|                                       | Sample ID     | 1021752     | 1021753     | 1021754     | 1021754     | 1021755     | 1021755     | 1021756     |
|                                       | Sample Date   | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  |
|                                       | Sample Time   | 10:25       | 10:35       | 10:45       | 10:45       | 10:55       | 10:55       | 11:05       |
|                                       | Sample Depth  | 2' - 4'     | 4' - 6'     | 0' - 2'     | 0' - 2'     | 2' - 4'     | 2' - 4'     | 2' - 4'     |
|                                       | Laboratory    | LEA         | LEA         | AEL         | LEA         | AEL         | LEA         | AEL         |
|                                       | Lab. Number   | 96-5902-494 | 96-5903-495 | AEL96013186 | 96-5904-496 | AEL96013187 | 96-5906-498 | AEL96013188 |
| Constituent                           | Units         |             |             |             |             |             |             |             |
| Methyl-tert-butyl Ether               | μg/kg         |             |             |             |             |             |             |             |
| Methylene Chloride                    | μ <b>g/kg</b> |             |             |             |             |             |             |             |
| Propionitrile                         | μg/kg         |             |             |             |             |             |             |             |
| Styrene                               | μg/kg         |             |             |             |             |             |             |             |
| Tetrachloroethane,1,1,1,2-            | μ <b>g/kg</b> |             |             |             |             |             |             |             |
| Tetrachloroethane, 1, 1, 2, 2-        | µg/kg         |             |             |             |             |             |             |             |
| Tetrachloroethylene                   | μg/kg         |             |             |             |             |             |             |             |
| Tetrachloroethylene (screening)       | μg/kg         | <22         | <21         |             | <22 nc      |             | <22         |             |
| Toluene                               | μg/kg         |             |             |             |             |             |             |             |
| Toluene (screening)                   | μg/kg         | <12         | <12         |             | <13 nc      |             | <12         |             |
| Trichloroethane, 1, 1, 1-             | μ <b>g/kg</b> |             |             |             |             |             |             |             |
| Trichloroethane, 1, 1, 1- (screening) | μg/kg         | <215        | <207        |             | <224 nc     |             | <215        |             |
| Trichloroethane, 1, 1, 2-             | μg/kg         |             |             |             |             |             |             |             |
| Trichloroethylene                     | μg/kg         |             |             |             |             |             |             |             |
| Trichloroethylene (screening)         | μg/kg         | <21         | <20         |             | <22 nc      |             | <21         |             |
| Trichloromonofluoromethane            | μg/kg         | <u> </u>    |             |             |             |             |             |             |
| Trichloropropane, 1, 2, 3-            | μg/kg         |             |             |             |             |             |             | 1           |
| Vinyl Acetate                         | μg/kg         |             |             |             |             |             |             |             |
| Vinyl Chloride                        | μg/kg         |             |             |             |             |             |             |             |
| Xylene,o- (screening)                 | μg/kg         |             |             |             |             |             |             |             |
| Xylenes (Total)                       | μg/kg         |             |             |             |             |             |             |             |
| Xylenes (Total) (screening)           | μg/kg         | <34         | <33         |             | <36 nc      |             | ⊲34         |             |
| Xylenes,m- & p- (screening)           | μ <b>g/kg</b> |             |             |             |             |             |             |             |
|                                       |               |             |             |             |             |             |             |             |
|                                       |               |             |             |             |             |             |             |             |
|                                       |               |             |             |             |             |             |             |             |
|                                       |               |             |             |             |             |             |             |             |
|                                       |               | Ī           |             |             |             |             |             |             |

### Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 19 of 66

|                                      |               |             |             |             |             |             |             | Page 19 01 66 |
|--------------------------------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------|
|                                      | Location ID   | NK-SB-221   | NK-SB-221   | NK-SB-222   | NK-SB-222   | NK-SB-222   | NK-SB-222   | NK-SB-222     |
|                                      | Sample ID     | 1021756     | 1021757     | 1021758     | 1021758     | 1021759     | 1021759     | 1021760       |
|                                      | Sample Date   | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996    |
|                                      | Sample Time   | 11:05       | 11:15       | 11:20       | 11:20       | 11:25       | 11:25       | 11:30         |
|                                      | Sample Depth  | 2' - 4'     | 4' - 6'     | 0' - 2'     | 0' - 2'     | 2' - 4'     | 2' - 4'     | 4' - 6'       |
|                                      | Laboratory    | LEA         | LEA         | AEL         | LEA         | AEL         | LEA         | LEA           |
|                                      | Lab. Number   | 96-5907-499 | 96-5908-500 | AEL96013189 | 96-5909-501 | AEL96013190 | 96-5910-502 | 96-5911-503   |
| Constituent                          | Units         | T           |             |             |             |             |             |               |
| Date Metals Analysed                 | -             |             |             |             |             |             |             |               |
| Date Organics Analysed               | •             | 11/14/1996  | 11/14/1996  |             | 11/14/1996  |             | 11/14/1996  | 11/14/1996    |
| Date PCBs Analysed                   |               |             |             |             |             |             |             |               |
| Date Physical Analysed               |               |             |             | 12/03/1996  |             | 12/03/1996  |             |               |
| Date Semi-volatile Organics Analysed | -             |             |             |             |             |             |             |               |
| Arsenic                              | mg/kg         |             |             |             |             |             |             |               |
| Barium                               | mg/kg         |             |             |             |             |             |             |               |
| Beryllium                            | mg/kg         |             |             |             |             |             |             |               |
| Cadmium                              | mg/kg         |             |             |             |             |             |             |               |
| Chromium                             | mg/kg         |             |             |             |             |             |             |               |
| Chromium (Total)                     | mg/kg         |             |             |             |             |             |             |               |
| Copper                               | mg/kg         |             |             |             |             |             |             |               |
| Lead                                 | mg/kg         |             |             |             |             |             |             |               |
| Mercury                              | mg/kg         |             |             |             |             |             |             |               |
| Nickel                               | mg/kg         |             |             |             |             |             |             |               |
| Selenium                             | mg/kg         |             |             |             |             |             |             |               |
| Silver                               | mg/kg         |             |             |             |             |             |             |               |
| Zinc                                 | mg/kg         |             |             |             |             |             |             |               |
| PCB 1016                             | μ <b>g/kg</b> |             |             |             |             |             |             |               |
| PCB 1221                             | μg/kg         |             |             |             |             |             |             |               |
| PCB 1232                             | μg/kg         |             |             |             |             |             |             |               |
| PCB 1242                             | μg/kg         |             |             |             |             |             |             |               |
| PCB 1248                             | μg/kg         |             |             |             |             |             |             |               |
| PCB 1254                             | μg/kg         |             |             |             |             |             |             |               |
| PCB 1260                             | με⁄κε         |             |             |             |             |             |             |               |
| Dibromo-3-chloropropane, 1,2-        | μg/kg         |             |             |             |             |             |             |               |
| Total Petroleum Hydrocarbons         | mg/kg         |             |             | <34.9       |             | ⊲7.2        |             |               |
| Acenaphthene                         | μg/kg         |             |             |             |             |             |             |               |
|                                      |               |             |             |             |             |             |             |               |

### Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 20 of 66

|                                 |               |             |             |             |             |             |              | Page 20 o   |
|---------------------------------|---------------|-------------|-------------|-------------|-------------|-------------|--------------|-------------|
|                                 | Location ID   | NK-SB-221   | NK-SB-221   | NK-SB-222   | NK-SB-222   | NK-SB-222   | NK-SB-222    | NK-SB-222   |
|                                 | Sample ID     | 1021756     | 1021757     | 1021758     | 1021758     | 1021759     | 1021759      | 1021760     |
|                                 | Sample Date   | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996   | 11/13/1996  |
|                                 | Sample Time   | 11:05       | 11:15       | 11:20       | 11:20       | 11:25       | 11:25        | 11:30       |
|                                 | Sample Depth  | 2' - 4'     | 4' - 6'     | 0' - 2'     | 0' - 2'     | 2' - 4'     | 2' - 4'      | 4' - 6'     |
|                                 | Laboratory    | LEA         | LEA         | AEL         | LEA         | AEL         | LEA          | LEA         |
|                                 | Lab. Number   | 96-5907-499 | 96-5908-500 | AEL96013189 | 96-5909-501 | AEL96013190 | 96-5910-502  | 96-5911-503 |
| Constituent                     | Units         |             |             |             |             |             |              |             |
| Acenaphthylene                  | μg/kg         | l           |             |             |             |             |              |             |
| Anthracene                      | μg/kg         |             |             |             |             |             |              |             |
| Benzidine                       | μ <b>g/kg</b> |             |             |             |             |             |              |             |
| Benzo[a]anthracene              | μg/kg         |             |             |             |             |             |              |             |
| Benzo[a]pyrene                  | μ <b>g/kg</b> | 1           |             |             |             |             |              |             |
| Benzo[b]fluoranthene            | μ <b>g/kg</b> | <u> </u>    |             |             |             |             |              |             |
| Benzo[ghi]perylene              | μ <b>g/kg</b> |             |             |             |             |             |              |             |
| Benzo[k]fluoranthene            | μ <b>g/kg</b> |             |             |             |             |             |              |             |
| Bis(2-chloroethoxy)methane      | μg/kg         |             |             |             |             |             |              |             |
| Bis(2-chloroethyl)ether         | μg/kg         |             |             |             |             |             |              |             |
| Bis(2-sthylhexyl)phthalate      | μ <b>g/kg</b> |             |             |             |             |             |              |             |
| Bromophenyl Phenyl Ether,4-     | μg/kg         |             |             |             |             |             |              |             |
| Butyl Benzyl Phthalate          | μg/kg         |             |             |             |             |             |              |             |
| Carbazole                       | μ <b>g/kg</b> |             |             |             |             |             |              |             |
| Chloroaniline,4-                | μg/kg         |             |             |             |             |             |              |             |
| Chloronaphthalene,2-            | μg/kg         |             |             |             |             |             |              |             |
| Chlorophenol,2-                 | μg/kg         |             |             |             |             |             |              |             |
| Chlorophenyl Phenyl Ether,4-    | μg/kg         |             |             |             |             |             |              |             |
| Chrysene                        | μg/kg         |             |             |             |             |             |              |             |
| Cresol,2-                       | μg/kg         |             |             |             |             |             |              |             |
| Cresol,4-                       | μg/kg         | <u> </u>    |             |             |             |             |              |             |
| Di-n-butyl Phthalate            | μ <b>g/kg</b> |             |             |             |             |             |              |             |
| Di-n-octyl Phthalate            | μ <b>g/kg</b> |             |             |             |             |             |              |             |
| Dibenzo[a,h]anthracene          | μ <b>g/kg</b> |             |             |             |             |             |              |             |
| Dibenzofuran                    | μ <b>g/kg</b> |             |             |             |             |             |              |             |
| Dichloro-2-butylene, 1,4-trans- | µg/kg         |             |             |             |             |             |              |             |
| Dichlorobenzidine,3,3'-         | μ <b>g/kg</b> |             |             |             |             |             |              |             |
| Dichlorophenol,2,4-             | μg/kg         | 1           |             |             |             |             | <del> </del> |             |



### Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

|                           |                |             |             |             |             |             |             | Page 21 of 6 |
|---------------------------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|
|                           | Location ID    | NK-SB-221   | NK-SB-221   | NK-SB-222   | NK-SB-222   | NK-SB-222   | NK-SB-222   | NK-SB-222    |
|                           | Sample ID      | 1021756     | 1021757     | 1021758     | 1021758     | 1021759     | 1021759     | 1021760      |
|                           | Sample Date    | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996   |
|                           | Sample Time    | 11:05       | 11:15       | 11:20       | 11:20       | 11:25       | 11:25       | 11:30        |
|                           | Sample Depth   | 2' - 4'     | 4' - 6'     | 0' - 2'     | 0' - 2'     | 2' - 4'     | 2' - 4'     | 4' - 6'      |
|                           | Laboratory     | LEA         | LEA         | AEL         | LEA         | AEL         | LEA         | LEA          |
|                           | Lab. Number    | 96-5907-499 | 96-5908-500 | AEL96013189 | 96-5909-501 | AEL96013190 | 96-5910-502 | 96-5911-503  |
| Constituent               | Units          |             |             |             |             |             |             |              |
| Diethyl Phthalate         | μ <b>g/k</b> g |             |             |             |             |             |             |              |
| Dimethyl Phthalate        | μg/kg          |             |             |             |             |             |             |              |
| Dimethylphenol,2,4-       | μ <b>g/kg</b>  |             |             |             |             |             |             |              |
| Dinitro-o-cresol, 4,6-    | μg/kg          |             |             |             |             |             |             |              |
| Dinitrophenol,2,4-        | μg/kg          |             |             |             |             |             |             |              |
| Dinitrotoluene,2,4-       | μg/kg          |             |             |             |             |             |             |              |
| Dinitrotoluene,2,6-       | μ <b>g/kg</b>  |             |             |             |             |             |             |              |
| Diphenylhydrazine,1,2-    | μ <b>g/kg</b>  |             |             |             |             |             |             |              |
| Fluoranthene              | μg/kg          |             |             |             |             |             |             |              |
| Fluorene                  | μg/kg          |             |             |             |             |             |             |              |
| Hexachlorobenzene         | μg/kg          |             |             |             |             |             |             |              |
| Hexachlorobutadiene       | μ <b>g/kg</b>  |             |             |             |             |             |             |              |
| Hexachlorocyclopentadiene | μg/kg          |             |             |             |             |             |             |              |
| Hexachloroethane          | μ <b>g/kg</b>  |             |             |             |             |             |             |              |
| Indeno(1,2,3-od)pyrene    | μg/kg          |             |             |             |             |             |             |              |
| Isophorone                | μg/kg          |             |             |             |             |             |             |              |
| Methylnaphthalone,2-      | μ <b>g/kg</b>  |             |             |             |             |             |             |              |
| N-nitrosodi-n-propylamine | μg/kg          |             |             |             |             |             |             |              |
| N-nitrosodimethylamine    | μ <b>g/k</b> g |             |             |             |             |             |             |              |
| N-nitrosodiphenylamine    | μg/kg          |             |             |             |             |             |             |              |
| Naphthalene               | μg/kg          |             |             |             |             |             |             |              |
| Nitroaniline,2-           | μg/kg          |             |             |             |             |             |             |              |
| Nitroaniline,3-           | μg/kg          |             |             |             |             |             |             |              |
| Nitroaniline, 4-          | μg/kg          |             |             |             |             |             |             |              |
| Nitrobenzene              | μg/kg          |             |             |             |             |             |             |              |
| Nitrophenol,2-            | μg/kg          |             |             |             |             |             |             |              |
| Nitrophenol,4-            | μg/kg          |             |             |             |             |             |             |              |
| Pentachlorophenol         | μg/kg          | 1           |             |             | <del></del> |             | 1           |              |

Notes: 1. Printed on 09/24/98

LΕΔ

# Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 22 of 66

|                                |               |             |             |             |             |             |             | Page 22 of  |
|--------------------------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                                | Location ID   | NK-SB-221   | NK-SB-221   | NK-SB-222   | NK-SB-222   | NK-SB-222   | NK-SB-222   | NK-SB-222   |
|                                | Sample ID     | 1021756     | 1021757     | 1021758     | 1021758     | 1021759     | 1021759     | 1021760     |
|                                | Sample Date   | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  |
|                                | Sample Time   | 11:05       | 11:15       | 11:20       | 11:20       | 11:25       | 11:25       | 11:30       |
|                                | Sample Depth  | 2' - 4'     | 4' - 6'     | 0' - 2'     | 0' - 2'     | 2' - 4'     | 2' - 4'     | 4' - 6'     |
|                                | Laboratory    | LEA         | LEA         | AEL         | LEA         | AEL         | LEA         | LEA         |
|                                | Lab. Number   | 96-5907-499 | 96-5908-500 | AEL96013189 | 96-5909-501 | AEL96013190 | 96-5910-502 | 96-5911-503 |
| Constituent                    | Units         |             |             |             |             |             |             |             |
| Phonanthrone                   | μ <b>g/kg</b> |             |             |             |             |             |             |             |
| Phenol                         | μg/kg         |             |             |             |             |             |             |             |
| Propane),2,2'-oxybis(2-chloro- | μ <b>g/kg</b> |             |             |             |             |             |             |             |
| Pyrene                         | μ <b>g/kg</b> |             |             |             |             |             |             |             |
| Trichlorobenzene, 1, 2, 4-     | μg/kg         |             |             |             |             |             |             |             |
| Trichlorophenol,2,4,5-         | μg/ <b>kg</b> |             |             |             |             |             |             |             |
| Trichlorophenol,2,4,6-         | μg/kg         |             |             |             |             |             |             |             |
| Acetone                        | μg/kg         |             |             |             |             |             |             |             |
| Acetonitrile                   | μg/kg         |             |             |             |             |             |             |             |
| Acrolein                       | μg/kg         |             |             |             |             |             |             |             |
| Acrylonitrile                  | μg/kg         |             |             |             |             |             |             |             |
| Allyl Chloride                 | μg/kg         |             |             |             |             |             |             |             |
| Benzene                        | μg/kg         |             |             |             |             |             |             |             |
| Benzene (screening)            | μg/kg         | <8 nc       | <8          |             | <8 nc       |             | <9 nc       | <8          |
| Bromobenzene                   | μg/kg         |             |             |             |             |             |             |             |
| Bromoform                      | μg/kg         |             |             |             |             |             |             |             |
| Carbon Disulfide               | μg/kg         |             |             |             |             |             |             |             |
| Carbon Tetrachloride           | μg/kg         |             |             |             |             |             | I           |             |
| Chlorobenzene                  | μg/kg         |             |             |             |             |             |             |             |
| Chlorodibromomethane           | μg/kg         |             |             |             |             |             |             |             |
| Chloroethane                   | μg/kg         |             |             |             |             |             |             |             |
| Chloroethyl Vinyl Ether,2-     | μg/kg         |             |             |             |             |             |             |             |
| Chloroform                     | μg/kg         |             |             |             |             |             |             |             |
| Chloroprene, beta-             | μg/kg         |             |             |             |             |             |             |             |
| Chlorotoluene,o-               | μg/kg         |             |             |             |             |             |             |             |
| Chlorotoluene,p-               | μg/kg         |             |             |             |             |             |             |             |
| Dibromomethane                 | μg/kg         |             |             |             |             |             |             |             |
| Dichlorobenzene,1,2-           | μg/kg         |             |             |             |             |             |             |             |
|                                |               | I           |             |             |             |             |             |             |



### Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 23 of 66

|                               |                |             |             |             |             |             | . <del> </del> | Page 23 01 00 |
|-------------------------------|----------------|-------------|-------------|-------------|-------------|-------------|----------------|---------------|
|                               | Location ID    | NK-SB-221   | NK-SB-221   | NK-SB-222   | NK-SB-222   | NK-SB-222   | NK-SB-222      | NK-SB-222     |
|                               | Sample ID      | 1021756     | 1021757     | 1021758     | 1021758     | 1021759     | 1021759        | 1021760       |
|                               | Sample Date    | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996     | 11/13/1996    |
|                               | Sample Time    | 11:05       | 11:15       | 11:20       | 11:20       | 11:25       | 11:25          | 11:30         |
|                               | Sample Depth   | 2' - 4'     | 4' - 6'     | 0' - 2'     | 0' - 2'     | 2' - 4'     | 2' - 4'        | 4' - 6'       |
|                               | Laboratory     | LEA         | LEA         | AEL         | LEA         | AEL         | LEA            | LEA           |
| -                             | Lab. Number    | 96-5907-499 | 96-5908-500 | AEL96013189 | 96-5909-501 | AEL96013190 | 96-5910-502    | 96-5911-503   |
| Constituent                   | Units          |             |             |             |             |             |                |               |
| Dichlorobenzene, 1,3-         | μg/kg          |             |             |             |             |             |                |               |
| Dichlorobenzene,1,4-          | μ <b>g/k</b> g |             |             |             |             |             |                |               |
| Dichlorobromomethane          | ha/ka          |             |             |             |             |             |                |               |
| Dichlorodifluoromethane       | μg/kg          |             |             |             |             |             |                |               |
| Dichlorosthane,1,1-           | μ <b>g/kg</b>  |             |             |             |             |             |                |               |
| Dichloroethane,1,2-           | μg/kg          |             |             |             |             |             |                |               |
| Dichloroethylene, 1,1-        | μg/kg          |             |             |             |             |             |                |               |
| Dichloroethylene,1,2-         | μ <b>g/k</b> g |             |             |             |             |             |                |               |
| Dichloroethylene,1,2-cis-     | μg/kg          |             |             |             |             |             |                |               |
| Dichloroethylene, 1, 2-trans- | μg/kg          |             |             |             |             |             |                |               |
| Dichloropropane,1,2-          | μg/kg          |             |             |             |             |             |                |               |
| Dichloropropylene, 1,3-       | μg/kg          | <u> </u>    |             |             |             |             |                |               |
| Dichloropropylene, 1,3-cis-   | μ <b>g/k</b> g |             |             |             |             |             |                |               |
| Dichloropropylene, 1,3-trans- | μ <b>g/k</b> g |             |             |             |             |             |                |               |
| Dioxane,1,4-                  | μg/kg          |             |             |             |             |             |                |               |
| Ethyl Methacrylate            | μ <b>g/k</b> g |             |             |             |             |             |                |               |
| Ethylbenzene                  | μg/kg          |             |             |             |             |             |                |               |
| Ethylbenzene (screening)      | μg/kg          | <17 nc      | <17         |             | <17 nc      |             | <19 nc         | <17           |
| Ethylene Dibromide            | μg/kg          |             |             |             |             |             |                |               |
| Hexanone,2-                   | μg/kg          |             |             |             |             |             |                |               |
| Iodomethane                   | μg/kg          |             |             |             |             |             |                |               |
| Isobutyl Alcohol              | μg/kg          |             |             |             |             |             |                | ,             |
| Methacrylonitrile             | μg/kg          |             |             |             |             |             |                |               |
| Methyl Bromide                | μg/kg          |             |             |             |             |             |                |               |
| Methyl Chloride               | μg/kg          |             |             |             |             |             |                |               |
| Methyl Ethyl Ketone           | μg/kg          |             |             |             |             |             |                |               |
| Methyl Methacrylate           | μg/kg          |             |             |             |             |             |                |               |
| Methyl-2-pentanone,4-         | μg/kg          |             |             |             |             |             |                |               |
|                               |                |             |             |             |             |             |                |               |

## Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 24 of 66

|                                       |               |             |             |             |             |             |             | Fage 24 01  |
|---------------------------------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                                       | Location ID   | NK-SB-221   | NK-SB-221   | NK-SB-222   | NK-SB-222   | NK-SB-222   | NK-SB-222   | NK-SB-222   |
|                                       | Sample ID     | 1021756     | 1021757     | 1021758     | 1021758     | 1021759     | 1021759     | 1021760     |
|                                       | Sample Date   | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  | 11/13/1996  |
|                                       | Sample Time   | 11:05       | 11:15       | 11:20       | 11:20       | 11:25       | 11:25       | 11:30       |
|                                       | Sample Depth  | 2' - 4'     | 4' - 6'     | 0' - 2'     | 0' - 2'     | 2' - 4'     | 2' - 4'     | 4' - 6'     |
|                                       | Laboratory    | LEA         | LEA         | AEL         | LEA         | AEL         | LEA         | LEA         |
|                                       | Lab. Number   | 96-5907-499 | 96-5908-500 | AEL96013189 | 96-5909-501 | AEL96013190 | 96-5910-502 | 96-5911-503 |
| Constituent                           | Units         |             |             |             |             |             |             |             |
| Methyl-tert-butyl Ether               | μg/kg         |             |             |             |             |             |             |             |
| Methylene Chloride                    | μg/kg         |             |             |             |             |             |             |             |
| Propionitrile                         | µg/kg         |             |             |             |             |             |             |             |
| Styrene                               | μg/kg         |             |             |             |             |             |             |             |
| Tetrachloroethane, 1, 1, 1, 2-        | μg/k <b>g</b> |             |             |             |             |             |             |             |
| Tetrachloroethane, 1, 1, 2, 2-        | μg/kg         |             |             |             |             |             |             |             |
| Tetrachloroethylene                   | μg/kg         |             |             |             |             |             |             |             |
| Tetrachloroethylene (screening)       | μ <b>g/kg</b> | <22 nc      | <21         |             | <22 nc      |             | <23 nc      | <21         |
| Toluene                               | μg/kg         |             |             |             |             |             |             |             |
| Toluene (screening)                   | μg/kg         | <12 nc      | <12         |             | <12 nc      |             | <13 nc      | <12         |
| Trichloroethane,1,1,1-                | μg/kg         |             |             |             |             |             |             |             |
| Trichloroethane, 1, 1, 1- (screening) | μg/kg         | <219 nc     | <211        |             | <219 no     |             | <233 nc     | <211        |
| Trichloroethane,1,1,2-                | μg/kg         |             |             |             |             |             |             |             |
| Trichloroethylene                     | μg/kg         |             |             |             |             |             |             |             |
| Trichloroethylene (screening)         | μg/kg         | <22 nc      | <21         |             | <22 nc      |             | <23 nc      | <21         |
| Trichloromonofluoromethane            | μg/kg         |             |             |             |             |             |             |             |
| Trichloropropane, 1, 2, 3-            | μg/kg         |             |             |             |             |             |             |             |
| Vinyl Acetate                         | μg/kg         |             |             |             |             |             |             |             |
| Vinyl Chloride                        | μg/kg         |             |             |             |             |             |             |             |
| Xylene,o- (screening)                 | μg/kg         |             |             |             |             |             |             |             |
| Xylenes (Total)                       | μg/kg         |             |             |             |             |             |             |             |
| Xylenes (Total) (screening)           | μg/kg         | <35 nc      | <33         |             | <35 nc      |             | <37 nc      | <33         |
| Xylenes,m- & p- (screening)           | μg/kg         |             |             |             |             |             |             |             |
|                                       |               |             |             |             |             |             |             |             |
|                                       |               |             |             |             |             |             |             |             |
|                                       |               |             |             |             |             |             |             |             |
|                                       |               |             |             |             |             |             |             |             |
|                                       |               | 1           |             |             |             |             |             | 7           |

# Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 25 of 66

|                                      |              |             |             |             |             |             |             | Page 25 of 66 |
|--------------------------------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------|
|                                      | Location ID  | NK-SB-43      |
|                                      | Sample ID    | 1017115     | 1017115     | 1017116     | 1017117     | 1017118     | 1017119     | 1017119       |
|                                      | Sample Date  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996    |
|                                      | Sample Time  | 13:20       | 13:20       | 13:30       | 13:40       | 13:45       | 13:52       | 13:52         |
|                                      | Sample Depth | 0' - 2'     | 0' - 2'     | 2' - 4'     | 4' - 6'     | 4' - 6'     | 6' - 8'     | 6' - 8'       |
|                                      | Laboratory   | AEL         | LEA         | LEA         | LEA         | LEA         | AEL         | LEA           |
|                                      | Lab, Number  | AEL96009144 | 96-3944-073 | 96-3945-074 | 96-3946-075 | 96-3947-076 | AEL96009145 | 96-3948-077   |
| Constituent                          | Units        |             |             |             |             |             |             |               |
| Date Metals Analysed                 | -            | 08/20/1996  |             |             |             |             | 08/20/1996  |               |
| Date Organics Analysed               | -            | 08/22/1996  | 08/15/1996  | 08/15/1996  | 08/15/1996  | 08/15/1996  | 08/22/1996  | 08/15/1996    |
| Date PCBs Analysed                   | •            |             |             |             |             |             |             |               |
| Date Physical Analysed               | •            | 08/22/1996  |             |             |             |             | 08/30/1996  |               |
| Date Semi-volatile Organics Analysed | •            | 08/30/1996  |             |             |             |             | 08/30/1996  |               |
| Arsenic                              | mg/kg        | <1.01       |             |             |             |             | <1.1        |               |
| Barium                               | mg/kg        | 19.1        |             |             |             |             | 13.4        |               |
| Beryllium                            | mg/kg        |             |             |             |             |             |             |               |
| Cadmium                              | mg/kg        | <3.04       |             |             |             |             | <3.31       |               |
| Chromium                             | mg/kg        | 6.28        |             |             |             |             | 7.62        |               |
| Chromium (Total)                     | mg/kg        |             |             |             |             |             |             |               |
| Copper                               | mg/kg        | 6.18        |             |             |             |             | 5.74        |               |
| Lead                                 | mg/kg        | <20.2       |             |             |             |             | <22.1       |               |
| Mercury                              | mg/kg        | <0.202      |             |             |             |             | <0.221      |               |
| Nickel                               | mg/kg        | <10.1       |             |             |             |             | <11         |               |
| Selenium                             | mg/kg        | <1.01       |             |             |             |             | <1.1        |               |
| Silver                               | mg/kg        | <5.06       |             |             |             |             | <5.52       |               |
| Zinc                                 | mg/kg        | 20.6        |             |             |             |             | 19.1        |               |
| PCB 1016                             | μg/kg        |             |             |             |             |             |             |               |
| PCB 1221                             | μg/kg        |             |             |             |             |             |             |               |
| PCB 1232                             | μg/kg        |             |             |             |             |             |             |               |
| PCB 1242                             | μg/kg        |             |             |             |             |             |             |               |
| PCB 1248                             | μg/kg        |             |             |             |             |             |             |               |
| PCB 1254                             | μg/kg        |             |             |             |             |             |             |               |
| PCB 1260                             | μg/kg        |             |             |             |             |             |             |               |
| Dibromo-3-chloropropane, 1, 2-       | µg/kg        |             |             |             |             |             |             |               |
| Total Petroleum Hydrocarbons         | mg/kg        | <34.2       |             |             |             |             | <36.4       |               |
| Acenaphthene                         | μg/kg        | <340        |             |             |             |             | <370        |               |
|                                      |              |             |             |             |             |             |             |               |

## Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

|                                 |                |             |             |             |             |              |             | Page 26 of 0 |
|---------------------------------|----------------|-------------|-------------|-------------|-------------|--------------|-------------|--------------|
|                                 | Location ID    | NK-SB-43    | NK-SB-43    | NK-SB-43    | NK-SB-43    | NK-SB-43     | NK-SB-43    | NK-SB-43     |
|                                 | Sample ID      | 1017115     | 1017115     | 1017116     | 1017117     | 1017118      | 1017119     | 1017119      |
|                                 | Sample Date    | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996   | 08/12/1996  | 08/12/1996   |
|                                 | Sample Time    | 13:20       | 13:20       | 13:30       | 13:40       | 13:45        | 13:52       | 13:52        |
|                                 | Sample Depth   | 0' - 2'     | 0' - 2'     | 2' - 4'     | 4' - 6'     | 4' - 6'      | 6' - 8'     | 6' - 8'      |
|                                 | Laboratory     | AEL         | LEA         | LEA         | LEA         | LEA          | AEL         | LEA          |
|                                 | Lab. Number    | AEL96009144 | 96-3944-073 | 96-3945-074 | 96-3946-075 | 96-3947-076  | AEL96009145 | 96-3948-077  |
| Constituent                     | Units          |             |             |             |             |              |             |              |
| Acenaphthylene                  | μg/kg          | <340        |             |             |             |              | ⊲370        |              |
| Anthracene                      | μ <b>g/kg</b>  | ⊲40         |             |             |             |              | ⊲370        |              |
| Benzidine                       | μg/kg          | <340        |             |             |             |              | ⊲370        |              |
| Benzo[a]anthracene              | μg/kg          | <340        |             |             |             |              | <370        |              |
| Benzo[a]pyrene                  | μ <b>g/k</b> g | <340        |             |             |             |              | <370        |              |
| Benzo[b]fluoranthene            | μ <b>g/k</b> g | <340 N1     |             |             |             |              | <370        |              |
| Benzo[ghi]perylene              | μg/kg          | <340        |             |             |             |              | ⊲370        |              |
| Benzo[k]fluoranthene            | μg/kg          | <340        |             |             |             |              | <370        |              |
| Bis(2-chloroethoxy)methane      | μ <b>g/k</b> g | <340        |             |             |             |              | <370        |              |
| Bis(2-chloroethyl)ether         | μ <b>g/k</b> g | <340        |             |             |             |              | ⊲370        |              |
| Bis(2-ethylhexyl)phthalate      | μg/kg          | <340        |             |             |             |              | <370        |              |
| Bromophenyl Phenyl Ether,4-     | μg/kg          | <340        |             |             |             |              | ⊲370        |              |
| Butyl Benzyl Phthalate          | μg/kg          | <340        |             |             |             |              | <370        |              |
| Carbazole                       | μg/kg          |             |             |             |             |              |             |              |
| Chlorosniline,4-                | μg/kg          |             |             |             |             |              |             |              |
| Chloronaphthalene,2-            | μg/kg          | <340        |             |             |             |              | ⊲370        | 11.50        |
| Chlorophenol,2-                 | μg/kg          | <340        |             |             |             |              | ⊲370        |              |
| Chlorophenyl Phenyl Ether,4-    | μg/kg          | <340        |             |             |             |              | <370        |              |
| Chrysene                        | μg/kg          | <340        |             |             |             |              | <370        |              |
| Cresol,2-                       | μg/kg          |             |             |             |             |              |             |              |
| Cresol,4-                       | μg/kg          |             |             |             |             |              |             |              |
| Di-n-butyl Phthalate            | μg/kg          | <860        |             |             |             |              | <730        |              |
| Di-n-octyl Phthalate            | μg/kg          | <340        |             |             |             |              | <370        |              |
| Dibenzo[a,h]anthracene          | μg/kg          | <340        |             |             |             |              | <370        |              |
| Dibenzofuran                    | μg/kg          |             |             |             |             | 1            |             |              |
| Dichloro-2-butylene, 1,4-trans- | μg/kg          |             |             |             |             |              |             | 1            |
| Dichlorobenzidine,3,3'-         | μg/kg          | <340        | <u> </u>    |             | <del></del> | <del> </del> | <370        |              |
| Dichlorophenol,2,4-             | μg/kg          | <340        |             |             |             |              | <370        |              |

## Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 27 of 66

| <b></b>                   |               |             |             |             |             |             | · · · · · · · · · · · · · · · · · · · | Page 27 01 00 |
|---------------------------|---------------|-------------|-------------|-------------|-------------|-------------|---------------------------------------|---------------|
|                           | Location ID   | NK-SB-43    | NK-SB-43    | NK-SB-43    | NK-SB-43    | NK-SB-43    | NK-SB-43                              | NK-SB-43      |
|                           | Sample ID     | 1017115     | 1017115     | 1017116     | 1017117     | 1017118     | 1017119                               | 1017119       |
|                           | Sample Date   | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996                            | 08/12/1996    |
|                           | Sample Time   | 13:20       | 13:20       | 13:30       | 13:40       | 13:45       | 13:52                                 | 13:52         |
|                           | Sample Depth  | 0' - 2'     | 0' - 2'     | 2' - 4'     | 4' - 6'     | 4' - 6'     | 6' - 8'                               | 6' - 8'       |
|                           | Laboratory    | AEL         | LEA         | LEA         | LEA         | LEA         | AEL                                   | LEA           |
|                           | Lab. Number   | AEL96009144 | 96-3944-073 | 96-3945-074 | 96-3946-075 | 96-3947-076 | AEL96009145                           | 96-3948-077   |
| Constituent               | Units         |             |             |             |             |             |                                       |               |
| Diethyl Phthalate         | μg/kg         | <340        |             |             |             |             | <370                                  |               |
| Dimethyl Phthalate        | μg/kg         | <340        |             |             |             |             | <370                                  |               |
| Dimethylphenol,2,4-       | μ <b>g/kg</b> | <340        |             |             |             |             | <370                                  |               |
| Dinitro-o-cresol,4,6-     | μg/kg         | <340        |             |             |             |             | <370                                  |               |
| Dinitrophenol,2,4-        | μg/kg         | <340        |             |             |             |             | <370                                  |               |
| Dinitrotoksene,2,4-       | μg/kg         | <340        |             |             |             |             | <370                                  |               |
| Dinitrotoluene,2,6-       | μg/kg         | <340        |             |             |             |             | <370                                  |               |
| Diphenylhydrazine,1,2-    | μ <b>g/kg</b> | <340        |             |             |             |             | <370                                  |               |
| Fluoranthene              | μg/kg         | <340 N1     |             |             |             |             | <370                                  |               |
| Fluorene                  | μg/kg         | <340        |             |             |             |             | <370                                  |               |
| Hexachlorobenzene         | μg/kg         | <340        |             |             |             |             | <370                                  |               |
| Hexachlorobutadiene       | μg/kg         | <340        |             |             |             |             | <370                                  |               |
| Hexachlorocyclopentadiene | μg/kg         | <340        |             |             |             |             | <370                                  |               |
| Hexachloroethane          | μg/kg         | <340        |             |             |             |             | <370                                  |               |
| Indeno(1,2,3-cd)pyrene    | μg/kg         | <340 N1     |             |             |             |             | <370                                  |               |
| Isophorone                | μg/kg         | <340        |             |             |             |             | <370                                  |               |
| Methylnaphthalene,2-      | μg/kg         |             | Ì           |             |             |             |                                       |               |
| N-nitrosodi-n-propylamine | μg/kg         | <340        |             |             |             |             | <370                                  |               |
| N-nitrosodimethylamine    | μg/kg         | <340        |             |             |             |             | <370                                  |               |
| N-nitrosodiphenylamine    | μg/kg         | <340        |             |             |             |             | <370                                  |               |
| Naphthalene               | μg/kg         | <340        |             |             |             |             | ⊲370                                  |               |
| Nitroaniline,2-           | μ <b>g/kg</b> |             |             |             |             |             |                                       |               |
| Nitroaniline,3-           | μg/kg         |             |             |             |             |             |                                       |               |
| Nitroaniline,4-           | μg/kg         |             |             |             |             |             |                                       |               |
| Nitrobenzene              | μ <b>g/kg</b> | <340        |             |             |             |             | <370                                  |               |
| Nitrophenol,2-            | μg/kg         | <340        |             |             |             |             | ⊲370                                  |               |
| Nitrophenol,4-            | μg/kg         | <340        |             |             |             |             | <370                                  |               |
| Pentachlorophenol         | μg/kg         | <340        |             | <u> </u>    |             |             | <370                                  |               |
| V                         | <u> </u>      |             | 1           |             |             |             |                                       |               |

Notes: 1. Printed on 09/24/98

LEA

## Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 28 of 66

|                                |                |             |                                                  |             |             |                |             | Page 28 of  |
|--------------------------------|----------------|-------------|--------------------------------------------------|-------------|-------------|----------------|-------------|-------------|
|                                | Location ID    | NK-SB-43    | NK-SB-43                                         | NK-SB-43    | NK-SB-43    | NK-SB-43       | NK-SB-43    | NK-SB-43    |
|                                | Sample ID      | 1017115     | 1017115                                          | 1017116     | 1017117     | 1017118        | 1017119     | 1017119     |
|                                | Sample Date    | 08/12/1996  | 08/12/1996                                       | 08/12/1996  | 08/12/1996  | 08/12/1996     | 08/12/1996  | 08/12/1996  |
|                                | Sample Time    | 13:20       | 13:20                                            | 13:30       | 13:40       | 13:45          | 13:52       | 13:52       |
|                                | Sample Depth   | 0' - 2'     | 0' - 2'                                          | 2' - 4'     | 4' - 6'     | 4' - 6'        | 6' - 8'     | 6' - 8'     |
|                                | Laboratory     | AEL         | LEA                                              | LEA         | LEA         | LEA            | AEL         | LEA         |
|                                | Lab. Number    | AEL96009144 | 96-3944-073                                      | 96-3945-074 | 96-3946-075 | 96-3947-076    | AEL96009145 | 96-3948-077 |
| Constituent                    | Units          |             |                                                  |             |             |                |             |             |
| Phenanthrene                   | μg/kg          | <340        |                                                  |             |             |                | <370        |             |
| Phenol                         | μ <b>g/kg</b>  | <340        |                                                  |             |             |                | <370        |             |
| Propane),2,2'-oxybis(2-chloro- | μg/kg          | <340        |                                                  |             |             |                | <370        |             |
| Pyrone                         | μg/kg          | <340 N1     |                                                  |             |             |                | <370        |             |
| Trichlorobenzene, 1, 2, 4-     | h <b>8/</b> kg | <340        |                                                  |             |             |                | <370        |             |
| Trichlorophenol,2,4,5-         | μg/kg          |             |                                                  |             |             |                |             |             |
| Trichlorophenol,2,4,6-         | μg/kg          | <340        |                                                  |             |             |                | <370        |             |
| Acetone                        | h8/k8          | <20         |                                                  |             |             |                | <22         | ·           |
| Acetonitrile                   | μg/kg          |             |                                                  |             |             |                |             |             |
| Acrolein                       | μg/kg          | <10         |                                                  |             |             |                | <11         |             |
| Acrylonitrile                  | μg/kg          | <10         |                                                  |             |             |                | <11         |             |
| Allyl Chloride                 | μg/kg          |             |                                                  |             |             |                |             |             |
| Benzene                        | μg/kg          | <4.0        |                                                  |             |             |                | <4.4        |             |
| Benzene (screening)            | μg/kg          |             | <6                                               | <7          | <8          | <8             |             | <7          |
| Bromobenzene                   | με/kg          | <4.0        |                                                  |             |             |                | <4.4        |             |
| Bromoform                      | μ <b>g/kg</b>  | <4.0        |                                                  |             |             |                | <4.4        |             |
| Carbon Disulfide               | h8/k8          | <4.0        |                                                  |             |             |                | <4.4        |             |
| Carbon Tetrachloride           | μg/kg          | <4.0        |                                                  |             |             |                | <4.4        |             |
| Chlorobenzene                  | μg/kg          | <4.0        |                                                  |             |             |                | <4.4        |             |
| Chlorodibromomethane           | μg/kg          | <4.0        |                                                  |             |             |                | <4.4        |             |
| Chloroethane                   | μg/kg          | <4.0        |                                                  |             |             |                | <4.4        |             |
| Chloroethyl Vinyl Ether,2-     | μg/kg          | <4.0        |                                                  |             |             |                | <4.4        |             |
| Chloroform                     | μg/kg          | <4.0        |                                                  |             |             |                | <4.4        |             |
| Chloroprene, beta-             | μg/kg          |             |                                                  |             |             |                |             |             |
| Chlorotoluene,o-               | μg/kg          | <4.0        |                                                  |             |             |                | <4.4        |             |
| Chlorotoluene,p-               | μg/kg          | <4.0        | 1                                                |             |             |                | <4.4        | <u> </u>    |
| Dibromomethane                 | μg/kg          | <4.0        | 1                                                |             |             |                | <4.4        |             |
| Dichlorobenzene, 1,2-          | μg/kg          | <4.0        | <del>                                     </del> |             |             | <del>-  </del> | <4.4        |             |
|                                | 1.0.0          |             |                                                  |             |             |                |             |             |

### Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 29 of 66

|                               |                |             |             |             |              |             |                                       | Page 29 01 0 |
|-------------------------------|----------------|-------------|-------------|-------------|--------------|-------------|---------------------------------------|--------------|
|                               | Location ID    | NK-SB-43    | NK-SB-43    | NK-SB-43    | NK-SB-43     | NK-SB-43    | NK-SB-43                              | NK-SB-43     |
|                               | Sample ID      | 1017115     | 1017115     | 1017116     | 1017117      | 1017118     | 1017119                               | 1017119      |
|                               | Sample Date    | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996   | 08/12/1996  | 08/12/1996                            | 08/12/1996   |
|                               | Sample Time    | 13:20       | 13:20       | 13:30       | 13:40        | 13:45       | 13:52                                 | 13:52        |
|                               | Sample Depth   | 0' - 2'     | 0' - 2'     | 2' - 4'     | 4' - 6'      | 4' - 6'     | 6' - 8'                               | 6' - 8'      |
|                               | Laboratory     | AEL         | LEA         | LEA         | LEA          | LEA         | AEL                                   | LEA          |
|                               | Lab. Number    | AEL96009144 | 96-3944-073 | 96-3945-074 | 96-3946-075  | 96-3947-076 | AEL96009145                           | 96-3948-077  |
| Constituent                   | Units          |             |             |             |              |             |                                       |              |
| Dichlorobenzene, 1,3-         | μg/kg          | <4.0        |             |             |              |             | <4.4                                  |              |
| Dichlorobenzene, 1,4-         | μg/kg          | <4.0        |             |             |              |             | <4.4                                  |              |
| Dichlorobromomethane          | μg/kg          | <4.0        |             |             |              |             | <4.4                                  |              |
| Dichlorodifluoromethane       | μg/kg          | <4.0        |             |             |              |             | <4.4                                  |              |
| Dichloroethane,1,1-           | μg/kg          | <4.0        |             |             |              |             | <4.4                                  |              |
| Dichloroethane,1,2-           | μg/kg          | <4.0        |             |             |              |             | <4.4                                  |              |
| Dichloroethylene, 1, 1-       | μg/kg          | <4.0        |             |             |              |             | <4.4                                  |              |
| Dichloroethylene, 1,2-        | μg/kg          |             |             |             |              |             |                                       |              |
| Dichloroethylene, 1, 2-cis-   | μ <b>g/k</b> g | <4.0        |             |             |              |             | <4.4                                  |              |
| Dichloroethylene, 1, 2-trans- | μ <b>g/</b> kg | <4.0        |             |             |              |             | <4.4                                  |              |
| Dichloropropane, 1,2-         | μg/kg          | <4.0        |             |             |              |             | <4.4                                  |              |
| Dichloropropylene,1,3-        | μ <b>g/kg</b>  |             |             |             |              |             |                                       |              |
| Dichloropropylene,1,3-cis-    | μg/kg          | <4.0        |             |             |              |             | <4.4                                  |              |
| Dichloropropylene, 1,3-trans- | μg/kg          | <4.0        |             |             |              |             | <4.4                                  |              |
| Dioxane, 1,4-                 | μg/kg          |             |             |             |              |             |                                       |              |
| Ethyl Methacrylate            | μg/kg          |             |             |             |              |             |                                       |              |
| Ethylbenzene                  | μg/kg          | <4.0        |             |             |              |             | <4.4                                  |              |
| Ethylbenzene (screening)      | μ <b>g/kg</b>  |             | <13         | <15         | <17          | <16         |                                       | <14          |
| Ethylene Dibromide            | μg/kg          |             |             |             |              |             |                                       |              |
| Hexanone,2-                   | μg/kg          | <9.9        |             |             |              |             | . <11                                 |              |
| Iodomethane                   | μg/kg          |             |             |             |              |             |                                       |              |
| Isobutyl Alcohol              | μ <b>g/kg</b>  |             |             |             |              |             |                                       | 1            |
| Methacrylonitrile             | μg/kg          |             |             |             |              |             | · · · · · · · · · · · · · · · · · · · |              |
| Methyl Bromide                | μg/kg          | <4.0        |             |             |              |             | <4.4                                  |              |
| Methyl Chloride               | μg/kg          | <4.0        |             |             |              |             | <4.4                                  |              |
| Methyl Ethyl Ketone           | μg/kg          | <9.9        |             |             |              |             | <11                                   |              |
| Methyl Methacrylate           | μg/kg          |             |             |             |              |             |                                       |              |
| Methyl-2-pentanone,4-         | μg/kg          | <10         |             |             |              |             | <11                                   |              |
|                               |                |             |             |             | ··· <b>i</b> |             |                                       | 1.           |

## Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 30 of 66

| <u> </u>                              |               |             |             |             |             |             |             | Fage 30 01  |
|---------------------------------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                                       | Location ID   | NK-SB-43    |
|                                       | Sample ID     | 1017115     | 1017115     | 1017116     | 1017117     | 1017118     | 1017119     | 1017119     |
|                                       | Sample Date   | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  |
|                                       | Sample Time   | 13:20       | 13:20       | 13:30       | 13:40       | 13:45       | 13:52       | 13:52       |
|                                       | Sample Depth  | 0' - 2'     | 0' - 2'     | 2' - 4'     | 4' - 6'     | 4' - 6'     | 6' - 8'     | 6' - 8'     |
|                                       | Laboratory    | AEL         | LEA         | LEA         | LEA         | LEA         | AEL         | LEA         |
|                                       | Lab. Number   | AEL96009144 | 96-3944-073 | 96-3945-074 | 96-3946-075 | 96-3947-076 | AEL96009145 | 96-3948-077 |
| Constituent                           | Units         |             |             |             |             |             |             |             |
| Methyl-tert-butyl Ether               | μg/kg         | <4.0        |             |             |             |             | <4.4        |             |
| Methylene Chloride                    | μg/kg         | <4.0        |             |             |             |             | <4.4        |             |
| Propionitrile                         | μ <b>g/kg</b> |             |             |             |             |             |             |             |
| Styrene                               | μg/kg         | <4.0        |             |             |             |             | <4.4        |             |
| Tetrachloroethane,1,1,1,2-            | μg/kg         | <4.0        |             |             |             |             | <4.4        |             |
| Tetrachloroethane, 1, 1, 2, 2-        | μg/kg         | <4.0        |             |             |             |             | <4.4        |             |
| Tetrachloroethylene                   | μ <b>g/kg</b> | <4.0        |             |             |             |             | <4.4        |             |
| Tetrachloroethylene (screening)       | μg/kg         |             | <16         | <19         | <21         | <20         |             | <18         |
| Toluene                               | μg/kg         | <4.0        |             |             |             |             | <4.4        |             |
| Toluene (screening)                   | μ <b>g/kg</b> |             | <9          | <11         | <12         | <11         |             | <10         |
| Trichloroethane,1,1,1-                | μ <b>g/kg</b> | <4.0        |             |             |             |             | <4.4        |             |
| Trichloroethane, 1, 1, 1- (screening) | μg/ <b>kg</b> | ŀ           | <160        | <188        | <211        | <203        |             | <179        |
| Trichloroethane,1,1,2-                | μg/kg         | <4.0        |             |             |             |             | <4.4        |             |
| Trichloroethylene                     | μg/kg         | <4.0        |             |             |             |             | <4.4        |             |
| Trichloroethylene (screening)         | μ <b>g/kg</b> | 1           | <16         | <19         | <21         | <20         |             | <18         |
| Trichloromonofluoromethane            | μg/kg         | <4.0        |             |             |             |             | <4.4        |             |
| Trichloropropane, 1, 2, 3-            | μg/kg         | <4.0        |             |             |             |             | <4.4        |             |
| Vinyl Acetate                         | μg/kg         | <4.0        |             |             |             |             | <4.4        |             |
| Vinyl Chloride                        | μ <b>g/kg</b> | <4.0        |             |             |             |             | <4.4        |             |
| Xylene,o- (screening)                 | μ <b>g/kg</b> |             |             |             |             |             |             |             |
| Xylones (Total)                       | μg/kg         | <4.0        |             |             |             |             | <4.4        |             |
| Xylenes (Total) (screening)           | μg/kg         |             |             |             |             |             |             |             |
| Xylenes,m- & p- (screening)           | μ <b>g/kg</b> |             |             |             |             |             |             |             |
|                                       |               |             |             |             |             |             |             |             |
|                                       |               |             |             |             |             |             |             |             |
|                                       |               |             |             |             |             |             |             |             |
|                                       |               |             |             |             |             |             |             |             |
|                                       |               |             |             |             |             |             |             |             |
|                                       |               |             | 1           |             |             |             |             |             |

## Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 31 of 66

|                                      |                |                                                  |             |             |                                                         |              |              | Page 31 of  |
|--------------------------------------|----------------|--------------------------------------------------|-------------|-------------|---------------------------------------------------------|--------------|--------------|-------------|
|                                      | Location ID    | NK-SB-43                                         | NK-SB-43    | NK-SB-43    | NK-SB-43                                                | NK-SB-44     | NK-SB-44     | NK-SB-44    |
|                                      | Sample ID      | 1017120                                          | 1017121     | 1017122     | 1017123                                                 | 1017124      | 1017124      | 1017125     |
|                                      | Sample Date    | 08/12/1996                                       | 08/12/1996  | 08/12/1996  | 08/12/1996                                              | 08/12/1996   | 08/12/1996   | 08/12/1996  |
|                                      | Sample Time    | 14:00                                            | 14:10       | 14:14       | 14:19                                                   | 14:30        | 14:30        | 14:40       |
|                                      | Sample Depth   | 8' - 10'                                         | 10' - 12'   | 12' - 14'   | 14' - 15'                                               | 0' - 2'      | 0' - 2'      | 2' - 4'     |
|                                      | Laboratory     | LEA                                              | LEA         | LEA         | LEA                                                     | AEL          | LEA          | LEA         |
|                                      | Lab. Number    | 96-3949-078                                      | 96-3950-079 | 96-3951-080 | 96-3952-081                                             | AEL96009146  | 96-3953-082  | 96-3954-083 |
| Constituent                          | Units          |                                                  |             |             |                                                         |              |              |             |
| Date Metals Analysed                 | -              |                                                  |             |             |                                                         | 08/20/1996   |              |             |
| Date Organics Analysed               | •              | 08/15/1996                                       | 08/15/1996  | 08/15/1996  | 08/15/1996                                              | 08/23/1996   | 08/15/1996   | 08/15/1996  |
| Date PCBs Analysed                   |                |                                                  |             |             |                                                         |              |              |             |
| Date Physical Analysed               | •              |                                                  |             |             |                                                         | 08/30/1996   |              |             |
| Date Semi-volatile Organics Analysed | -              |                                                  |             |             |                                                         | 08/30/1996   |              |             |
| Amenic                               | mg/kg          |                                                  |             |             |                                                         | <1.04        |              |             |
| Barium                               | mg/kg          |                                                  |             |             |                                                         | 17.6         |              |             |
| Beryllium                            | mg/kg          |                                                  |             |             |                                                         |              |              |             |
| Cadmium                              | mg/kg          |                                                  |             |             |                                                         | ⊲3.11        |              |             |
| Chromium                             | mg/kg          |                                                  |             |             |                                                         | 6.95         |              |             |
| Chromium (Total)                     | mg/kg          |                                                  |             |             |                                                         |              |              |             |
| Copper                               | mg/kg          |                                                  |             |             |                                                         | 5.6          |              |             |
| Load                                 | mg/kg          |                                                  |             |             |                                                         | <20.8        |              |             |
| Mercury                              | mg/kg          |                                                  |             |             |                                                         | <0.208       |              |             |
| Nickel                               | mg/kg          |                                                  |             |             |                                                         | <10.4        |              |             |
| Selenium                             | mg/kg          |                                                  |             |             |                                                         | <1.04        |              |             |
| Silver                               | mg/kg          |                                                  |             |             |                                                         | <5.19        |              |             |
| Zinc                                 | mg/kg          |                                                  |             |             |                                                         | 21.9         |              |             |
| PCB 1016                             | μ <b>g/k</b> g |                                                  |             |             |                                                         |              |              |             |
| PCB 1221                             | μ <b>g/kg</b>  |                                                  |             |             |                                                         |              | -            |             |
| PCB 1232                             | μg/kg          |                                                  | _           |             |                                                         |              |              |             |
| PCB 1242                             | μg/kg          |                                                  |             |             |                                                         |              |              |             |
| PCB 1248                             | μg/kg          |                                                  |             |             |                                                         |              |              |             |
| PCB 1254                             | μg/kg          |                                                  |             |             |                                                         |              |              |             |
| PCB 1260                             | μg/kg          |                                                  |             |             |                                                         |              |              |             |
| Dibromo-3-chloropropane, 1,2-        | μg/kg          |                                                  |             | <del></del> | · · <del>  • · · · · · · · · · · · · · · · · · · </del> | <del> </del> | -            |             |
| Total Petroleum Hydrocarbons         | mg/kg          | 1                                                |             |             |                                                         | 328          | <del>-</del> |             |
| Acenaphthene                         | μg/kg          | <del>                                     </del> |             |             | <del></del>                                             | <340         |              |             |

## Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 32 of 66

|                                 |               |             |             |             |             |             |             | Page 32 of  |
|---------------------------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                                 | Location ID   | NK-SB-43    | NK-SB-43    | NK-SB-43    | NK-SB-43    | NK-SB-44    | NK-SB-44    | NK-SB-44    |
|                                 | Sample ID     | 1017120     | 1017121     | 1017122     | 1017123     | 1017124     | 1017124     | 1017125     |
|                                 | Sample Date   | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  |
|                                 | Sample Time   | 14:00       | 14:10       | 14:14       | 14:19       | 14:30       | 14:30       | 14:40       |
|                                 | Sample Depth  | 8' - 10'    | 10' - 12'   | 12' - 14'   | 14' - 15'   | 0' - 2'     | 0' - 2'     | 2' - 4'     |
|                                 | Laboratory    | LEA         | LEA         | LEA         | LEA         | AEL         | LEA         | LEA         |
|                                 | Lab. Number   | 96-3949-078 | 96-3950-079 | 96-3951-080 | 96-3952-081 | AEL96009146 | 96-3953-082 | 96-3954-083 |
| Constituent                     | Units         |             |             |             |             |             |             |             |
| Acenaphthylene                  | μ <b>g/kg</b> |             |             |             |             | <340        |             |             |
| Anthracene                      | μg/kg         |             |             |             |             | <340        |             |             |
| Benzidine                       | μg/kg         |             |             |             |             | <340        |             |             |
| Benzo[a]anthracene              | μg/kg         |             |             |             |             | <340        |             |             |
| Benzo[a]pyrene                  | μg/kg         |             |             |             |             | <340        |             |             |
| Benzo[b]fluoranthene            | μg/kg         |             |             |             |             | <340        |             |             |
| Benzo[ghi]perylene              | μg/kg         |             |             |             |             | <340        |             |             |
| Benzo[k]fluoranthene            | μg/kg         |             |             |             |             | <340        |             |             |
| Bis(2-chlorosthoxy)methane      | μg/kg         |             |             |             |             | <340        |             |             |
| Bis(2-chloroethyl)ether         | μg/kg         |             |             |             |             | <340        |             |             |
| Bis(2-sthylhexyl)phthalate      | μg/kg         |             |             |             |             | <340        |             |             |
| Bromophenyl Phenyl Ether,4-     | μg/kg         |             |             |             |             | <340        |             |             |
| Butyl Benzyl Phthalate          | μg/kg         |             |             |             |             | <340        |             |             |
| Carbazole                       | μg/kg         |             |             |             |             |             |             |             |
| Chloroaniline,4-                | μg/kg         |             |             |             |             |             |             |             |
| Chloronaphthalene,2-            | μg/kg         |             |             |             |             | <340        |             |             |
| Chlorophenol,2-                 | μg/kg         |             |             |             |             | <340        |             | 0.10        |
| Chlorophenyl Phenyl Ether,4-    | μg/kg         |             |             |             |             | <340        |             |             |
| Chrysene                        | μ <b>g/kg</b> |             |             |             |             | <340        |             |             |
| Cresol,2-                       | μg/kg         |             |             |             |             |             |             |             |
| Cresol,4-                       | μg/kg         |             |             |             |             |             |             |             |
| Di-n-butyl Phthalate            | μ <b>g/kg</b> |             |             |             |             | <690        |             |             |
| Di-n-octyl Phthalate            | μg/kg         |             |             |             |             | <340        |             |             |
| Dibenzo[a,h]anthracene          | μg/kg         |             |             |             |             | <340        |             |             |
| Dibenzofuran                    | μg/kg         |             |             |             |             |             |             |             |
| Dichloro-2-butylene, 1,4-trans- | μg/kg         |             |             |             |             |             |             |             |
| Dichlorobenzidine,3,3'-         | μg/kg         |             |             |             |             | <340        |             |             |
| Dichlorophenol,2,4-             | μg/kg         | 1           |             |             |             | ⊲340        | <u> </u>    |             |

# Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 33 of 66

|                           |                |             |             |                                                  |             |             |             | Page 33 of 60 |
|---------------------------|----------------|-------------|-------------|--------------------------------------------------|-------------|-------------|-------------|---------------|
|                           | Location ID    | NK-SB-43    | NK-SB-43    | NK-SB-43                                         | NK-SB-43    | NK-SB-44    | NK-SB-44    | NK-SB-44      |
|                           | Sample ID      | 1017120     | 1017121     | 1017122                                          | 1017123     | 1017124     | 1017124     | 1017125       |
|                           | Sample Date    | 08/12/1996  | 08/12/1996  | 08/12/1996                                       | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996    |
|                           | Sample Time    | 14:00       | 14:10       | 14:14                                            | 14:19       | 14:30       | 14:30       | 14:40         |
|                           | Sample Depth   | 8' - 10'    | 10' - 12'   | 12' - 14'                                        | 14' - 15'   | 0' - 2'     | 0' - 2'     | 2' - 4'       |
|                           | Laboratory     | LEA         | LEA         | LEA                                              | LEA         | AEL         | LEA         | LEA           |
|                           | Lab. Number    | 96-3949-078 | 96-3950-079 | 96-3951-080                                      | 96-3952-081 | AEL96009146 | 96-3953-082 | 96-3954-083   |
| Constituent               | Units          |             |             |                                                  |             |             |             |               |
| Diethyl Phthalate         | μ <b>g/k</b> g |             |             |                                                  |             | <340        |             |               |
| Dimethyl Phthalate        | μg/kg          | 1           |             |                                                  |             | <340        |             |               |
| Dimethylphenol,2,4-       | μg/kg          |             |             |                                                  |             | <340        |             |               |
| Dinitro-o-cresol, 4,6-    | μg/kg          | 1           |             |                                                  |             | <340        |             |               |
| Dinitrophenol,2,4-        | μg/kg          |             |             |                                                  |             | <340        |             |               |
| Dinitrotoluene,2,4-       | μg/kg          |             |             |                                                  |             | <340        |             |               |
| Dinitrotoluene,2,6-       | μg/kg          |             |             |                                                  |             | <340        |             |               |
| Diphenylhydrazine,1,2-    | μg/kg          |             |             |                                                  |             | <340        |             |               |
| Fluoranthene              | μg/kg          |             |             |                                                  |             | <340        |             |               |
| Phorene                   | μg/kg          |             |             |                                                  |             | <340        |             |               |
| Hexachlorobenzene         | μ <b>g/kg</b>  |             |             |                                                  |             | <340        |             |               |
| Hexachlorobutadiene       | μ <b>g/k</b> g |             |             |                                                  |             | <340        |             |               |
| Hexachlorocyclopentadiene | μ <b>g/k</b> g |             |             |                                                  |             | <340        |             |               |
| Hexachloroethane          | μ <b>g/kg</b>  |             |             |                                                  |             | <340        |             |               |
| Indeno(1,2,3-cd)pyrene    | μ <b>g/kg</b>  |             |             |                                                  |             | ⊲340        |             |               |
| Isophorone                | μ <b>g/kg</b>  |             |             |                                                  |             | <340        |             |               |
| Methylnaphthalene,2-      | μ <b>g/kg</b>  |             |             |                                                  |             |             |             |               |
| N-nitrosodi-n-propylamine | μ <b>g/kg</b>  |             |             |                                                  |             | <340        |             |               |
| N-nitrosodimethylamine    | μg/kg          | Ţ           |             |                                                  |             | <340        |             |               |
| N-nitrosodiphenylamine    | μg/kg          |             |             |                                                  |             | <340        |             |               |
| Naphthalene               | μg/kg          |             |             |                                                  |             | <340        |             |               |
| Nitroaniline,2-           | μg/kg          |             |             |                                                  |             |             |             |               |
| Nitroaniline,3-           | μg/kg          |             |             |                                                  |             |             |             |               |
| Nitroaniline,4-           | μg/kg          |             |             |                                                  |             |             |             |               |
| Nitrobenzene              | μg/kg          |             |             |                                                  |             | <340        |             |               |
| Nitrophenol,2-            | μg/kg          |             |             |                                                  |             | <340        |             |               |
| Nitrophenol,4-            | μg/kg          |             |             |                                                  |             | <340        |             |               |
| Pentachlorophenol         | μg/kg          |             |             |                                                  |             | <340        |             |               |
|                           |                | 1           |             | <del>                                     </del> |             | <del></del> | <del></del> | <del></del>   |

# Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 34 of 66

|                                |               |                                                |             |             |             |             |              | rage 34 UI  |
|--------------------------------|---------------|------------------------------------------------|-------------|-------------|-------------|-------------|--------------|-------------|
|                                | Location ID   | NK-SB-43                                       | NK-SB-43    | NK-SB-43    | NK-SB-43    | NK-SB-44    | NK-SB-44     | NK-SB-44    |
|                                | Sample ID     | 1017120                                        | 1017121     | 1017122     | 1017123     | 1017124     | 1017124      | 1017125     |
|                                | Sample Date   | 08/12/1996                                     | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996   | 08/12/1996  |
|                                | Sample Time   | 14:00                                          | 14:10       | 14:14       | 14:19       | 14:30       | 14:30        | 14:40       |
|                                | Sample Depth  | 8' - 10'                                       | 10' - 12'   | 12' - 14'   | 14' - 15'   | 0' - 2'     | 0' - 2'      | 2' - 4'     |
|                                | Laboratory    | LEA                                            | LEA         | LEA         | LEA         | AEL         | LEA          | LEA         |
|                                | Lab. Number   | 96-3949-078                                    | 96-3950-079 | 96-3951-080 | 96-3952-081 | AEL96009146 | 96-3953-082  | 96-3954-083 |
| Constituent                    | Units         |                                                |             |             |             |             |              |             |
| Phenanthrene                   | μg/kg         |                                                |             |             |             | <340        |              |             |
| Phenol                         | μg/kg         |                                                |             |             |             | <340        |              |             |
| Propane),2,2'-oxybis(2-chloro- | μ <b>g/kg</b> |                                                |             |             |             | <340        |              |             |
| Ругеце                         | μg/kg         |                                                |             |             |             | <340        |              |             |
| Trichlorobenzene,1,2,4-        | μg/kg         |                                                |             |             |             | <340        |              |             |
| Trichlorophenol,2,4,5-         | μg/kg         |                                                |             |             |             |             |              |             |
| Trichlorophenol,2,4,6-         | μg/kg         |                                                |             |             |             | <340        |              |             |
| Acetone                        | μg/kg         |                                                |             |             |             | <21         |              |             |
| Acetonitrile                   | μg/kg         |                                                |             |             |             |             |              |             |
| Acrolein                       | μg/kg         |                                                |             |             |             | <10         |              |             |
| Acrylonitrile                  | μg/kg         |                                                |             |             |             | <10         |              |             |
| Allyl Chloride                 | μg/kg         |                                                |             |             |             |             |              |             |
| Benzene                        | μg/kg         |                                                |             |             |             | <4.2        |              |             |
| Benzene (screening)            | μ <b>g/kg</b> | <7                                             | <8 nc       | <8          | <7          |             | <7           | <7          |
| Bromobenzene                   | μg/kg         |                                                |             |             |             | <4.2        |              |             |
| Bromoform                      | μg/kg         |                                                |             |             |             | <4.2        |              |             |
| Carbon Disulfide               | μg/kg         |                                                |             |             |             | <4.2        |              |             |
| Carbon Tetrachloride           | μ <b>g/kg</b> | Ţ.                                             |             |             |             | <4.2        |              |             |
| Chlorobenzene                  | μg/kg         |                                                |             |             |             | <4.2        |              |             |
| Chlorodibromomethane           | μg/kg         | 1                                              |             |             |             | <4.2        |              |             |
| Chloroethane                   | μg/kg         |                                                |             |             |             | <4.2        |              |             |
| Chloroethyl Vinyl Ether,2-     | μg/kg         |                                                |             |             |             | <4.2        |              |             |
| Chloroform                     | μg/kg         | T                                              |             |             |             | <4.2        |              |             |
| Chloroprene, beta-             | μg/kg         |                                                |             |             |             |             |              |             |
| Chlorotoluene,o-               | μg/kg         | İ .                                            |             |             |             | <4.2        |              |             |
| Chlorotoluene,p-               | μg/kg         | T                                              |             |             | <del></del> | <4.2        |              | <b></b>     |
| Dibromomethane                 | μg/kg         |                                                | 1           | 1           |             | <4.2        | 1            |             |
| Dichlorobenzene, 1,2-          | μg/kg         | <u>†                                      </u> |             |             |             | <4.2        | <del> </del> |             |

## Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 35 of 66

|                                       |                | 75                                               |              | 1                                                |             | 1.00        |              | Page 35 of  |
|---------------------------------------|----------------|--------------------------------------------------|--------------|--------------------------------------------------|-------------|-------------|--------------|-------------|
|                                       | Location ID    | NK-SB-43                                         | NK-SB-43     | NK-SB-43                                         | NK-\$B-43   | NK-SB-44    | NK-SB-44     | NK-SB-44    |
|                                       | Sample ID      | 1017120                                          | 1017121      | 1017122                                          | 1017123     | 1017124     | 1017124      | 1017125     |
| · · · · · · · · · · · · · · · · · · · | Sample Date    | 08/12/1996                                       | 08/12/1996   | 08/12/1996                                       | 08/12/1996  | 08/12/1996  | 08/12/1996   | 08/12/1996  |
|                                       | Sample Time    | 14:00                                            | 14:10        | 14:14                                            | 14:19       | 14:30       | 14:30        | 14:40       |
|                                       | Sample Depth   | 8' - 10'                                         | 10' - 12'    | 12' - 14'                                        | 14' - 15'   | 0' - 2'     | 0' - 2'      | 2' - 4'     |
|                                       | Laboratory     | LEA                                              | LEA          | LEA                                              | LEA         | AEL         | LEA          | LEA         |
|                                       | Lab. Number    | 96-3949-078                                      | 96-3950-079  | 96-3951-080                                      | 96-3952-081 | AEL96009146 | 96-3953-082  | 96-3954-083 |
| Constituent                           | Units          |                                                  |              |                                                  |             |             |              |             |
| Dichlorobenzene, 1,3-                 | μ <b>g/kg</b>  |                                                  |              |                                                  |             | <4.2        |              |             |
| Dichlorobenzene, 1, 4-                | μg/kg          |                                                  |              |                                                  |             | <4.2        |              |             |
| Dichlorobromomethane                  | μ <b>g/kg</b>  |                                                  |              |                                                  |             | <4.2        |              |             |
| Dichlorodifluoromethane               | μ <b>g/k</b> g |                                                  |              |                                                  |             | <4.2        |              |             |
| Dichloroethane,1,1-                   | μ <b>g/k</b> g |                                                  |              |                                                  |             | <4.2        |              |             |
| Dichloroethane,1,2-                   | μg/kg          |                                                  |              |                                                  |             | <4.2        |              |             |
| Dichloroethylene, 1, 1-               | μg/kg          |                                                  |              |                                                  |             | <4.2        |              |             |
| Dichloroethylene, 1,2-                | μg/kg          |                                                  |              |                                                  |             |             |              |             |
| Dichlorosthylene, 1,2-cis-            | μ <b>g/k</b> g |                                                  |              |                                                  |             | <4.2        |              |             |
| Dichloroethylene, 1, 2-trans-         | μg/kg          |                                                  |              |                                                  |             | <4.2        |              |             |
| Dichloropropane, 1, 2-                | μg/kg          |                                                  |              |                                                  |             | <4.2        |              |             |
| Dichloropropylene, 1,3-               | µg/kg          | Ī                                                |              |                                                  |             |             |              |             |
| Dichloropropylene, 1,3-cis-           | μg/kg          |                                                  |              |                                                  |             | <4.2        |              |             |
| Dichloropropylene, 1,3-trans-         | μ <b>g/kg</b>  |                                                  |              |                                                  |             | <4.2        |              |             |
| Dioxans, 1,4-                         | μ <b>g/kg</b>  |                                                  |              |                                                  |             |             |              |             |
| Ethyl Methacrylate                    | μg/kg          |                                                  |              |                                                  |             |             |              |             |
| Ethylbenzene                          | μg/kg          |                                                  |              |                                                  |             | <4.2        |              |             |
| Ethylbenzene (screening)              | μ <b>g/kg</b>  | <14                                              | <17 nc       | <16                                              | <14         |             | <15          | <15         |
| Ethylene Dibromide                    | μg/kg          |                                                  |              |                                                  |             |             |              |             |
| Hexanone,2-                           | μ <b>g/kg</b>  | 1                                                | 1            |                                                  |             | <10         |              |             |
| Iodomethane                           | μg/kg          | 1                                                |              |                                                  |             |             |              | 1           |
| Isobutyi Alcohol                      | μg/kg          | <b>T</b>                                         | 1            |                                                  |             |             |              |             |
| Methacrylonitrile                     | μ <b>g/kg</b>  | <u> </u>                                         |              |                                                  | 1           |             |              |             |
| Methyl Bromide                        | μg/kg          | <del> </del>                                     |              | <del>-  </del>                                   |             | <4.2        |              | 1           |
| Methyl Chloride                       | μg/kg          |                                                  |              |                                                  | 1           | <4.2        |              |             |
| Methyl Ethyl Ketone                   | μg/kg          |                                                  |              |                                                  |             | <10         |              |             |
| Methyl Methacrylate                   | μg/kg          | 1                                                |              |                                                  |             |             |              |             |
| Methyl-2-pentanone,4-                 | μg/kg          | <del>                                     </del> | <del> </del> | <del>                                     </del> | <del></del> | <10         | <del> </del> | <del></del> |

LΕΔ

## Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 36 of 66

|                                       | Location ID   | NK-SB-43    | NK-SB-43    | NK-SB-43    | NK-SB-43    | NK-SB-44    | NK-SB-44    | NK-SB-44    |
|---------------------------------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                                       | Sample ID     | 1017120     | 1017121     | 1017122     | 1017123     | 1017124     | 1017124     | 1017125     |
|                                       | Sample Date   | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  |
|                                       | Sample Time   | 14:00       | 14:10       | 14:14       | 14:19       | 14:30       | 14:30       | 14:40       |
|                                       | Sample Depth  | 8' - 10'    | 10' - 12'   | 12' - 14'   | 14' - 15'   | 0' - 2'     | 0' - 2'     | 2' - 4'     |
|                                       | Laboratory    | LEA         | LEA         | LEA         | LEA         | AEL         | LEA         | LEA         |
|                                       | Lab. Number   | 96-3949-078 | 96-3950-079 | 96-3951-080 | 96-3952-081 | AEL96009146 | 96-3953-082 | 96-3954-083 |
| Constituent                           | Units         |             | 7.00000     |             |             |             |             |             |
| Methyl-tert-butyl Ether               | μg/kg         |             |             |             |             | <4.2        |             | <u> </u>    |
| Methylene Chloride                    | μg/kg         | <b>†</b>    |             |             |             | <4.2        | <del></del> |             |
| Propionitrile                         | μg/kg         |             |             |             |             |             | <del></del> | <del></del> |
| Styrene                               | μg/kg         |             |             |             | <del></del> | <4.2        |             |             |
| Tetrachloroethane, 1, 1, 1, 2-        | μg/kg         |             |             |             |             | <4.2        |             |             |
| Tetrachloroethane, 1, 1, 2, 2-        | μg/kg         |             |             |             |             | <4.2        |             |             |
| Tetrachloroethylene                   | μg/kg         |             |             |             |             | <4.2        |             |             |
| Tetrachlorosthylene (screening)       | μg/kg         | <18         | <22 nc      | <20         | <18         |             | <18         | <18         |
| Toluene                               | μg/kg         |             |             |             |             | <4.2        |             |             |
| Toluene (screening)                   | μg/kg         | <10         | <12 nc      | <11         | <10         |             | <10         | <10         |
| Trichloroethane, 1, 1, 1-             | μg/kg         |             |             |             |             | <4.2        |             |             |
| Trichloroethane, 1, 1, 1- (screening) | μg/kg         | <176        | <219 nc     | <203        | <179        |             | <182        | <182        |
| Trichloroethane, 1, 1,2-              | μg/kg         |             |             |             |             | <4.2        |             |             |
| Trichlorosthylene                     | μg/kg         |             |             |             |             | <4.2        |             |             |
| Trichloroethylene (screening)         | μg/ <b>kg</b> | <17         | <22 nc      | <20         | <18         |             | <18         | <18         |
| Trichloromonofluoromethane            | μg/kg         |             |             |             |             | <4.2        |             |             |
| Trichloropropane, 1, 2, 3-            | μg/kg         |             |             |             |             | <4.2        |             |             |
| Vinyl Acetate                         | μg/kg         |             |             |             |             | <4.2        |             |             |
| Vinyl Chloride                        | μg/kg         |             |             |             |             | <4.2        |             |             |
| Xylene,o- (screening)                 | μg/kg         |             |             |             |             |             |             |             |
| Xylenes (Total)                       | μg/kg         |             |             |             |             | <4.2        |             |             |
| Xylenes (Total) (screening)           | μg/kg         |             |             |             |             |             |             | ·           |
| Xylenes,m- & p- (screening)           | μg/kg         |             |             |             |             |             |             |             |
|                                       |               |             |             |             |             |             |             |             |
|                                       |               |             |             |             |             |             |             |             |
|                                       |               |             |             |             |             |             |             |             |
|                                       |               |             |             |             |             |             |             |             |
|                                       |               |             |             |             |             |             |             |             |

## Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 37 of 66

|                                      |              |             |             |             |             |             |             | Page 37 of 66 |
|--------------------------------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------|
|                                      | Location ID  | NK-SB-44      |
|                                      | Sample ID    | 1017126     | 1017127     | 1017127     | 1017128     | 1017129     | 1017130     | 1017131       |
|                                      | Sample Date  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996    |
|                                      | Sample Time  | 14:50       | 14:58       | 14:58       | 15:04       | 15:09       | 15:15       | 15:25         |
|                                      | Sample Depth | 4' - 6'     | 6' - 8'     | 6' - 8'     | 8' - 10'    | 10' - 12'   | 12' - 14'   | 14' - 15'     |
|                                      | Laboratory   | LEA         | AEL         | LEA         | LEA         | LEA         | LEA         | LEA           |
|                                      | Lab. Number  | 96-3959-086 | AEL96009228 | 96-3960-087 | 96-3961-088 | 96-3964-091 | 96-3963-090 | 96-3965-092   |
| Constituent                          | Units        |             |             |             |             |             |             |               |
| Date Metals Analysed                 | •            |             | 08/22/1996  |             |             |             |             |               |
| Date Organics Analysed               | •            | 08/16/1996  | 08/23/1996  | 08/16/1996  | 08/16/1996  | 08/16/1996  | 08/16/1996  | 08/16/1996    |
| Date PCBs Analysed                   | •            |             |             | 1           |             |             |             |               |
| Date Physical Analysed               |              |             | 08/30/1996  |             |             |             |             |               |
| Date Semi-volatile Organics Analysed | •            |             | 09/10/1996  |             |             |             |             |               |
| Arsenic                              | mg/kg        |             | <1.04       |             |             |             |             |               |
| Barium                               | mg/kg        |             | 12.9        |             |             |             |             |               |
| Beryllium                            | mg/kg        |             |             |             |             |             |             |               |
| Cadmium                              | mg/kg        |             | <3.13       |             |             |             |             |               |
| Chromium                             | mg/kg        |             | 8.03        |             |             |             |             |               |
| Chromium (Total)                     | mg/kg        |             |             |             |             |             |             |               |
| Copper                               | mg/kg        |             |             |             |             |             |             |               |
| Lead                                 | mg/kg        |             | <20.8       |             |             |             |             |               |
| Mercury                              | mg/kg        |             | <0.208      |             |             |             |             |               |
| Nickel                               | mg/kg        |             | <10.4       |             |             |             |             |               |
| Selenium                             | mg/kg        |             | <1.04       |             |             |             |             |               |
| Silver                               | mg/kg        |             | <5.21       |             |             |             |             |               |
| Zinc                                 | mg/kg        |             | 17          |             |             |             |             |               |
| PCB 1016                             | μg/kg        |             |             |             |             |             |             |               |
| PCB 1221                             | μg/kg        |             |             |             |             |             |             |               |
| PCB 1232                             | μg/kg        |             |             |             |             |             |             |               |
| PCB 1242                             | μg/kg        |             |             |             |             |             |             |               |
| PCB 1248                             | μg/kg        |             |             |             |             |             |             |               |
| PCB 1254                             | μg/kg        |             |             |             |             |             |             |               |
| PCB 1260                             | μg/kg        |             |             |             |             |             |             |               |
| Dibromo-3-chloropropane,1,2-         | μg/kg        |             |             |             |             |             |             |               |
| Total Petroleum Hydrocarbons         | mg/kg        |             | <35.1       |             |             |             |             |               |
| Acenaphthene                         | μg/kg        |             | <350        |             |             |             |             |               |
|                                      |              |             |             |             |             |             |             |               |

#### Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

|                                 |               |             |             |                                                  |             |             |             | Page 38 of  |
|---------------------------------|---------------|-------------|-------------|--------------------------------------------------|-------------|-------------|-------------|-------------|
|                                 | Location ID   | NK-SB-44    | NK-SB-44    | NK-SB-44                                         | NK-SB-44    | NK-SB-44    | NK-SB-44    | NK-SB-44    |
|                                 | Sample ID     | 1017126     | 1017127     | 1017127                                          | 1017128     | 1017129     | 1017130     | 1017131     |
|                                 | Sample Date   | 08/12/1996  | 08/12/1996  | 08/12/1996                                       | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  |
|                                 | Sample Time   | 14:50       | 14:58       | 14:58                                            | 15:04       | 15:09       | 15:15       | 15:25       |
|                                 | Sample Depth  | 4' - 6'     | 6' - 8'     | 6' - 8'                                          | 8' - 10'    | 10' - 12'   | 12' - 14'   | 14' - 15'   |
|                                 | Laboratory    | LEA         | AEL         | LEA                                              | LEA         | LEA         | LEA         | LEA         |
|                                 | Lab. Number   | 96-3959-086 | AEL96009228 | 96-3960-087                                      | 96-3961-088 | 96-3964-091 | 96-3963-090 | 96-3965-092 |
| Constituent                     | Units         |             |             |                                                  |             |             |             |             |
| Acenaphthylene                  | μg/kg         |             | <350        |                                                  |             |             |             |             |
| Anthraosne                      | μ <b>g/kg</b> |             | <350        |                                                  |             |             |             |             |
| Benzidine                       | μ <b>g/kg</b> |             | <350        |                                                  |             |             |             |             |
| Benzo[a]anthracene              | μg/kg         |             | <350        |                                                  |             |             |             |             |
| Benzo[a]pyrene                  | μ <b>g/kg</b> |             | <350        |                                                  |             |             |             |             |
| Benzo[b]fluoranthene            | μg/kg         |             | <350        |                                                  |             |             |             |             |
| Benzo[ghi]perylene              | μg/kg         |             | <350        |                                                  |             |             |             |             |
| Benzo[k]fluoranthene            | μ <b>g/kg</b> |             | <350        |                                                  |             |             |             |             |
| Bis(2-ohloroethoxy)methane      | μg/kg         |             | <350        |                                                  |             |             |             |             |
| Bis(2-chloroethyl)ether         | μg/kg         |             | <350        |                                                  |             |             |             |             |
| Bis(2-ethylhexyl)phthalate      | μg/kg         |             | <350        |                                                  |             |             |             |             |
| Bromophenyl Phenyl Ether,4-     | μg/kg         |             | <350        |                                                  |             |             |             |             |
| Butyl Benzyl Phthalate          | μg/kg         |             | <350        |                                                  |             |             |             |             |
| Carbazole                       | μg/kg         |             |             |                                                  |             |             |             |             |
| Chlorosniline,4-                | μg/kg         |             |             |                                                  |             |             |             |             |
| Chloronaphthalene,2-            | μg/kg         |             | <350        |                                                  |             |             |             |             |
| Chlorophenol,2-                 | μ <b>g/kg</b> |             | <350        |                                                  |             |             |             |             |
| Chlorophenyi Phenyi Ether,4-    | μg/kg         |             | <350        |                                                  |             |             |             |             |
| Chrysene                        | μg/kg         |             | <350        |                                                  |             |             |             |             |
| Cresol,2-                       | μg/kg         |             |             |                                                  |             |             |             |             |
| Cresol,4-                       | μg/kg         |             |             |                                                  |             |             |             |             |
| Di-n-butyl Phthalate            | μg/kg         |             | <350        |                                                  |             |             |             |             |
| Di-n-octyl Phthalate            | μg/kg         |             | <350        |                                                  |             |             |             |             |
| Dibenzo[a,h]anthracene          | μ <b>g/kg</b> |             | <350        |                                                  |             |             |             |             |
| Dibenzofuran                    | μg/kg         |             |             |                                                  |             |             |             | 1           |
| Dichloro-2-butylene, 1,4-trans- | μg/kg         |             |             | 1                                                |             |             |             |             |
| Dichlorobenzidine,3,3'-         | μg/kg         |             | <350        |                                                  |             |             |             |             |
| Dichlerophenol,2,4-             | μg/kg         |             | <350        | <del>                                     </del> |             |             |             |             |

## Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 39 of 66

|                           |                |             |             |                                                  |             |              |             | Page 39 01 00 |
|---------------------------|----------------|-------------|-------------|--------------------------------------------------|-------------|--------------|-------------|---------------|
|                           | Location ID    | NK-SB-44    | NK-SB-44    | NK-SB-44                                         | NK-SB-44    | NK-SB-44     | NK-SB-44    | NK-SB-44      |
|                           | Sample ID      | 1017126     | 1017127     | 1017127                                          | 1017128     | 1017129      | 1017130     | 1017131       |
|                           | Sample Date    | 08/12/1996  | 08/12/1996  | 08/12/1996                                       | 08/12/1996  | 08/12/1996   | 08/12/1996  | 08/12/1996    |
|                           | Sample Time    | 14:50       | 14:58       | 14:58                                            | 15:04       | 15:09        | 15:15       | 15:25         |
|                           | Sample Depth   | 4' - 6'     | 6' - 8'     | 6' - 8'                                          | 8' - 10'    | 10' - 12'    | 12' - 14'   | 14' - 15'     |
|                           | Laboratory     | LEA         | AEL         | LEA                                              | LEA         | LEA          | LEA         | LEA           |
|                           | Lab. Number    | 96-3959-086 | AEL96009228 | 96-3960-087                                      | 96-3961-088 | 96-3964-091  | 96-3963-090 | 96-3965-092   |
| Constituent               | Units          |             |             |                                                  |             |              |             |               |
| Diethyl Phthalate         | μg/kg          |             | <350        |                                                  |             |              |             |               |
| Dimethyl Phihalate        | ha/ka          |             | <350        |                                                  |             |              |             |               |
| Dimethylphenol,2,4-       | μg/kg          |             | <350        |                                                  |             |              |             |               |
| Dinitro-o-cresol,4,6-     | μ <b>g/kg</b>  |             | <350        |                                                  |             |              |             |               |
| Dinitrophenol,2,4-        | μg/kg          |             | <350        |                                                  |             |              |             |               |
| Dinitrotoluene,2,4-       | μg/kg          |             | <350        |                                                  |             |              |             |               |
| Dinitrotohuene,2,6-       | μg/kg          |             | <350        |                                                  |             |              |             |               |
| Diphenylhydrazine,1,2-    | μg/kg          |             | <350        |                                                  |             |              |             |               |
| Fluoranthene              | μg/kg          |             | <350        |                                                  |             |              |             |               |
| Fluorene                  | μ <b>g/kg</b>  |             | <350        |                                                  |             |              |             |               |
| Hexachlorobenzene         | μg/kg          |             | <350        |                                                  |             |              |             |               |
| Herrachlorobutadiene      | μg/kg          |             | <350        |                                                  |             |              |             |               |
| Hexachlorocyclopentadiene | μg/kg          |             | <350        |                                                  |             |              |             |               |
| Hexachloroethane          | μg/kg          |             | <350        |                                                  |             |              |             |               |
| Indeno(1,2,3-od)pyrene    | μg/kg          |             | <350        |                                                  |             |              |             |               |
| Isophorone                | μ <b>g/k</b> g |             | <350        |                                                  |             |              |             |               |
| Methylnaphthalene,2-      | μg/kg          |             |             |                                                  |             |              |             |               |
| N-nitrosodi-n-propylamine | μg/kg          |             | <350        |                                                  |             |              |             |               |
| N-nitrosodimethylamine    | μg/kg          |             | <350        |                                                  |             |              |             |               |
| N-nitrosodiphenylamine    | μg/kg          |             | <350        |                                                  |             |              |             |               |
| Naphthalene               | μg/kg          |             | <350        |                                                  |             |              |             |               |
| Nitroaniline,2-           | μg/kg          |             |             |                                                  |             |              |             |               |
| Nitroaniline,3-           | μg/kg          |             |             |                                                  |             |              |             |               |
| Nitroaniline,4-           | μg/kg          |             |             |                                                  |             |              |             |               |
| Nitrobenzene              | μg/kg          |             | <350        |                                                  | 1           |              |             |               |
| Nitrophenol,2-            | μg/kg          |             | <350        | <del>}</del>                                     |             | <del> </del> |             |               |
| Nitrophenol,4-            | μg/kg          |             | <350        |                                                  | <u> </u>    | <del> </del> | 1           |               |
| Pentachiorophenol         | μg/kg          |             | <350        | <del>                                     </del> |             | <del> </del> | 1           | ļ ————        |
|                           |                |             | t           | 1.                                               |             | †            |             | <u> </u>      |

## Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 40 of 66

|                                |               |                     |             |             |             |             |             | Page 40 of  |
|--------------------------------|---------------|---------------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                                | Location ID   | NK-SB-44            | NK-SB-44    | NK-SB-44    | NK-SB-44    | NK-SB-44    | NK-SB-44    | NK-SB-44    |
|                                | Sample ID     | 1017126             | 1017127     | 1017127     | 1017128     | 1017129     | 1017130     | 1017131     |
|                                | Sample Date   | 08/12/1996          | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  |
|                                | Sample Time   | 14:50               | 14:58       | 14:58       | 15:04       | 15:09       | 15:15       | 15:25       |
|                                | Sample Depth  | 4' - 6'             | 6' - 8'     | 6' - 8'     | 8' - 10'    | 10' - 12'   | 12' - 14'   | 14' - 15'   |
|                                | Laboratory    | LEA                 | AEL         | LEA         | LEA         | LEA         | LEA         | LEA         |
|                                | Lab. Number   | <b>96-3</b> 959-086 | AEL96009228 | 96-3960-087 | 96-3961-088 | 96-3964-091 | 96-3963-090 | 96-3965-092 |
| Constituent                    | Units         |                     |             |             |             |             |             |             |
| Phonanthrone                   | μg/kg         |                     | <350        |             |             |             |             |             |
| Phenol                         | μg/kg         |                     | <350        |             |             |             |             |             |
| Propane),2,2'-oxybis(2-chloro- | μg/kg         |                     | <350        |             |             |             |             |             |
| Pyrene                         | μg/kg         |                     | <350        |             |             |             |             |             |
| Trichlorobenzene,1,2,4-        | μ <b>g/kg</b> |                     | <350        |             |             |             |             |             |
| Trichlorophenol,2,4,5-         | μg/kg         |                     |             |             |             |             |             |             |
| Trichlorophenol,2,4,6-         | μg/kg         |                     | <350        |             |             |             |             |             |
| Acetone                        | μg/kg         |                     | <25         |             |             |             |             |             |
| Acetonitrile                   | μg/kg         |                     |             |             |             |             |             |             |
| Acrolein                       | μg/kg         |                     | <13         |             |             |             |             |             |
| Acrylonitrile                  | μg/kg         |                     | <13         |             |             |             |             |             |
| Allyl Chloride                 | μ <b>g/kg</b> |                     |             |             |             |             |             |             |
| Benzene                        | μg/kg         |                     | <5.0        |             |             |             |             |             |
| Benzene (screening)            | μg/kg         | <7                  |             | <8          | <7          | <7          | <7          | <8          |
| Bromobenzene                   | μg/kg         |                     | <5.0        |             |             |             |             |             |
| Bromoform                      | μ <b>g/kg</b> |                     | <5.0        |             |             |             |             |             |
| Carbon Disulfide               | μg/kg         |                     | <5.0        |             |             |             |             |             |
| Carbon Tetrachloride           | μg/kg         |                     | <5.0        |             |             |             |             |             |
| Chlorobenzene                  | μ <b>g/kg</b> |                     | <5.0        |             |             |             |             |             |
| Chlorodibromomethane           | μg/kg         |                     | <5.0        |             |             |             |             |             |
| Chloroethane                   | μg/kg         |                     | <5.0        |             |             |             |             |             |
| Chloroethyl Vinyl Ether,2-     | μg/kg         |                     | <5.0        |             |             |             |             |             |
| Chloroform                     | μg/kg         |                     | <5.0        |             |             |             |             |             |
| Chloroprene, beta-             | μ <b>g/kg</b> |                     | T           |             |             |             |             |             |
| Chlorotoluene,o-               | μg/kg         |                     | <5.0        |             |             |             |             |             |
| Chlorotoluene,p-               | μg/kg         |                     | <5.0        |             |             |             |             |             |
| Dibromomethane                 | μg/kg         |                     | <5.0        |             |             |             |             |             |
| Dichlorobenzene,1,2-           | μg/kg         | 1                   | <5.0        |             |             | <u> </u>    |             | <u> </u>    |



## Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

|                               |                |             |             |             |             | _ <u></u>   |             | Page 41 o   |
|-------------------------------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                               | Location ID    | NK-SB-44    |
|                               | Sample ID      | 1017126     | 1017127     | 1017127     | 1017128     | 1017129     | 1017130     | 1017131     |
|                               | Sample Date    | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  |
|                               | Sample Time    | 14:50       | 14:58       | 14:58       | 15:04       | 15:09       | 15:15       | 15:25       |
|                               | Sample Depth   | 4' - 6'     | 6' - 8'     | 6' - 8'     | 8' - 10'    | 10' - 12'   | 12' - 14'   | 14' - 15'   |
|                               | Laboratory     | LEA         | AEL         | LEA         | LEA         | LEA         | LEA         | LEA         |
|                               | Lab. Number    | 96-3959-086 | AEL96009228 | 96-3960-087 | 96-3961-088 | 96-3964-091 | 96-3963-090 | 96-3965-092 |
| Constituent                   | Units          |             |             |             |             |             |             |             |
| Dichlorobenzene,1,3-          | μg/kg          |             | <5.0        |             |             |             |             |             |
| Dichlorobenzene, 1,4-         | μg/kg          |             | <5.0        |             |             |             |             |             |
| Dichlorobromomethane          | μg/kg          |             | <5.0        |             |             |             |             |             |
| Dichlorodifluoromethane       | μ <b>g/kg</b>  |             | <5.0        |             |             |             |             |             |
| Dichloroethane, 1, 1-         | μ <b>g/k</b> g |             | <5.0        |             |             |             |             |             |
| Dichloroethane,1,2-           | μ <b>g/k</b> g |             | <5.0        |             |             |             |             |             |
| Dichloroethylene, I, 1-       | μg/kg          |             | <5.0        |             |             |             |             |             |
| Dichloroethylene, 1, 2-       | μg/kg          |             |             |             |             |             |             |             |
| Dichloroethylene, 1,2-cis-    | μg/kg          |             | <5.0        |             |             |             |             |             |
| Dichloroethylene, 1,2-trans-  | μg/kg          |             | <5.0        |             |             |             |             |             |
| Dichloropropane, 1, 2-        | μ <b>g/kg</b>  |             | <5.0        |             |             |             |             |             |
| Dichloropropylene,1,3-        | μg/kg          |             |             |             |             |             |             |             |
| Dichloropropylene, 1,3-cis-   | μ <b>g/kg</b>  |             | <5.0        |             |             |             |             |             |
| Dishloropropylene, 1,3-trans- | μg/kg          |             | <5.0        |             |             |             |             |             |
| Dioxane, 1,4-                 | μg/kg          |             |             |             |             |             |             |             |
| Ethyl Methacrylate            | μg/kg          |             |             |             |             |             |             |             |
| Ethylbenzene                  | μg/kg          |             | <5.0        |             |             |             |             |             |
| Ethylbenzene (screening)      | μg/kg          | <16         |             | <17         | <16         | <15         | <15         | <17         |
| thylene Dibromide             | μg/kg          |             |             |             |             |             |             |             |
| Hexanone,2-                   | μg/kg          |             | <13         |             |             |             |             |             |
| odomethane                    | μg/kg          |             |             |             |             |             |             |             |
| sobutyl Alcohol               | μg/kg          |             |             |             |             |             |             |             |
| Methacrylonitrile             | μ <b>g/kg</b>  |             |             |             |             |             |             |             |
| Methyl Bromide                | μ <b>g/kg</b>  |             | <5.0        |             |             |             |             |             |
| Methyl Chloride               | µg∕kg          |             | <5.0        |             |             |             |             |             |
| Methyl Ethyl Ketone           | μg/kg          |             | <13         |             |             |             |             |             |
| Methyl Methacrylate           | μg/kg          |             |             |             |             |             |             |             |
| Methyl-2-pentanone,4-         | μg/kg          |             | <13         |             |             |             |             |             |

## Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 42 of 66

|                                       | Location ID    | NK-SB-44    | NK-SB-44    | NK-SB-44       | NK-SB-44    | NK-SB-44    | NK-SB-44    | NK-SB-44    |
|---------------------------------------|----------------|-------------|-------------|----------------|-------------|-------------|-------------|-------------|
|                                       | Sample ID      | 1017126     | 1017127     | 1017127        | 1017128     | 1017129     | 1017130     | 1017131     |
|                                       | Sample Date    | 08/12/1996  | 08/12/1996  | 08/12/1996     | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  |
| · · · · · · · · · · · · · · · · · · · | Sample Time    | 14:50       | 14:58       | 14:58          | 15:04       | 15:09       | 15:15       | 15:25       |
|                                       | Sample Depth   | 4' - 6'     | 6' - 8'     | 6' - 8'        | 8' - 10'    | 10' - 12'   | 12' - 14'   | 14' - 15'   |
|                                       | Laboratory     | LEA         | AEL         | LEA            | LEA         | LEA         | LEA         | LEA         |
|                                       | Lab. Number    | 96-3959-086 | AEL96009228 | 96-3960-087    | 96-3961-088 | 96-3964-091 | 96-3963-090 | 96-3965-092 |
| Constituent                           | Units          |             |             |                |             |             |             |             |
| Methyl-tert-butyl Ether               | μg/kg          |             | <5.0        |                |             |             |             |             |
| Methylene Chloride                    | μ <b>g/kg</b>  |             | <5.0        |                |             |             |             |             |
| Propionitrile                         | μg/kg          |             |             |                |             |             |             |             |
| Styrene                               | μg/kg          |             | <5.0        |                |             |             |             |             |
| Tetrachloroethane, 1, 1, 1, 2-        | μg/kg          |             | <5.0        |                |             |             |             |             |
| Tetrachloroethane, 1, 1, 2, 2-        | μg/kg          |             | <5.0        |                |             |             |             |             |
| Tetrachioroethylene                   | μ <b>g/kg</b>  |             | <5.0        |                |             |             |             |             |
| Tetrachloroethylene (screening)       | μg/kg          | <20         |             | <21            | <20         | <19         | <19         | <21         |
| Toluene                               | μg/kg          |             | <5.0        |                |             |             |             |             |
| Toluene (screening)                   | μg/kg          | <11         |             | <12            | <11         | <10         | <11         | <12         |
| Trichloroethane, 1, 1, 1-             | μ <b>g/kg</b>  |             | <5.0        |                |             |             |             |             |
| Trichloroethane, 1, 1, 1- (screening) | μg/kg          | <195        |             | <211           | <199        | <185        | <188        | <211        |
| Trichloroethane,1,1,2-                | μ <b>g/k</b> g |             | <5.0        |                |             |             |             |             |
| Trichloroethylene                     | μg/kg          |             | <5.0        |                |             |             |             |             |
| Trichloroethylene (screening)         | μg/kg          | <19         |             | <21            | <20         | <18         | <19         | <21         |
| Trichloromonofluoromethane            | μg/kg          |             | <5.0        |                |             |             |             |             |
| Trichloropropane, 1, 2, 3-            | μg/kg          |             | <5.0        |                |             |             |             |             |
| Vinyl Acetate                         | μg/kg          |             | <5.0        |                |             |             |             |             |
| Vinyl Chloride                        | μg/kg          |             | <5.0        |                |             |             |             |             |
| Xylene,o- (screening)                 | μg/kg          |             |             |                |             |             |             |             |
| Xylenes (Total)                       | μg/kg          |             | <5.0        |                |             |             |             |             |
| Xylenes (Total) (screening)           | μg/kg          |             |             |                |             |             |             |             |
| Xylenes,m- & p- (screening)           | μg/kg          |             |             |                |             |             |             |             |
|                                       |                |             |             |                |             |             |             |             |
|                                       |                |             |             |                |             |             |             |             |
|                                       |                |             |             |                |             |             |             |             |
|                                       |                | 1           |             |                |             |             |             |             |
|                                       |                | 1           |             | <del>-  </del> |             |             |             |             |

LEΔ

# Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 43 of 66

|                                      |               |             |             |             |             |             |             | Page 43 of 66 |
|--------------------------------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------|
|                                      | Location ID   | NK-SB-45      |
|                                      | Sample ID     | 1017132     | 1017132     | 1017133     | 1017134     | 1017135     | 1017135     | 1017136       |
|                                      | Sample Date   | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996    |
|                                      | Sample Time   | 15:40       | 15:40       | 15:50       | 15:53       | 16:07       | 16:07       | 16:15         |
|                                      | Sample Depth  | 0' - 2'     | 0' - 2'     | 2' - 4'     | 4' - 6'     | 6' - 8'     | 6' - 8'     | 8' - 10'      |
|                                      | Laboratory    | AEL         | LEA         | LEA         | LEA         | AEL         | LEA         | LEA           |
|                                      | Lab. Number   | AEL96009229 | 96-3966-093 | 96-3967-094 | 96-3968-098 | AEL96009230 | 96-3969-099 | 96-3970-100   |
| Constituent                          | Units         |             |             |             |             |             |             |               |
| Date Metals Analysed                 | -             | 08/22/1996  |             |             |             | 08/22/1996  |             |               |
| Date Organics Analysed               | •             | 08/23/1996  | 08/16/1996  | 08/16/1996  | 08/16/1996  | 08/23/1996  | 08/16/1996  | 08/16/1996    |
| Date PCBs Analysed                   | -             |             |             |             |             |             |             |               |
| Date Physical Analysed               | •             | 08/30/1996  |             |             |             | 08/30/1996  |             |               |
| Date Semi-volatile Organics Analysed | -             | 09/10/1996  |             |             |             | 09/10/1996  |             |               |
| Arsenic                              | mg/kg         | 5.87        |             |             |             | <1.11       |             |               |
| Barium                               | mg/kg         | 62.4        |             |             |             | 14          |             |               |
| Beryllium                            | mg/kg         |             |             |             |             |             |             |               |
| Cadmium                              | mg/kg         | <3.06       |             |             |             | <3.33       | 4           |               |
| Chromium                             | mg/kg         | 12.4        |             |             |             | 6.11        |             |               |
| Chromium (Total)                     | mg/kg         | <u> </u>    |             |             |             |             |             |               |
| Copper                               | mg/kg         |             |             |             |             |             |             |               |
| Load                                 | mg/kg         | <20.4       |             |             |             | <22.2       |             |               |
| Mercury                              | mg/kg         | <0.204      |             |             |             | <0.222      |             |               |
| Nickel                               | mg/kg         | <10.2       |             |             |             | <11.1       |             |               |
| Selenium                             | mg/kg         | <1.02       |             |             |             | <1.11       |             |               |
| Silver                               | mg/kg         | <5.1        |             |             |             | <5.55       |             |               |
| Zinc                                 | mg/kg         | 33.8        |             |             |             | 16.3        |             |               |
| PCB 1016                             | μg/kg         |             |             |             |             |             |             |               |
| PCB 1221                             | μg/kg         |             |             |             |             |             |             |               |
| PCB 1232                             | μg/kg         |             |             |             |             |             |             |               |
| PCB 1242                             | μ <b>g/kg</b> |             |             |             |             |             |             |               |
| PCB 1248                             | ha/ka         |             |             |             |             |             |             |               |
| PCB 1254                             | μg/kg         |             |             |             |             |             |             |               |
| PCB 1260                             | μ <b>g/kg</b> |             |             |             |             |             |             |               |
| Dibromo-3-chloropropane,1,2-         | μg/kg         |             |             |             |             |             |             |               |
| Total Petroleum Hydrocarbons         | mg/kg         | <35.9       |             |             |             | <36.8       |             |               |
| Acenaphthene                         | μg/kg         | <360        |             |             |             | <360        |             |               |
| V                                    |               |             |             |             |             |             |             |               |

# Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 44 of 66

|                                  |               |             |             |             |             |             |              | Page 44 of  |
|----------------------------------|---------------|-------------|-------------|-------------|-------------|-------------|--------------|-------------|
|                                  | Location ID   | NK-SB-45    | NK-SB-45    | NK-SB-45    | NK-SB-45    | NK-SB-45    | NK-SB-45     | NK-SB-45    |
|                                  | Sample ID     | 1017132     | 1017132     | 1017133     | 1017134     | 1017135     | 1017135      | 1017136     |
|                                  | Sample Date   | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996   | 08/12/1996  |
|                                  | Sample Time   | 15:40       | 15:40       | 15:50       | 15:53       | 16:07       | 16:07        | 16:15       |
|                                  | Sample Depth  | 0' - 2'     | 0' - 2'     | 2' - 4'     | 4' - 6'     | 6' - 8'     | 6' - 8'      | 8' - 10'    |
|                                  | Laboratory    | AEL         | LEA         | LEA         | LEA         | AEL         | LEA          | LEA         |
|                                  | Lab. Number   | AEL96009229 | 96-3966-093 | 96-3967-094 | 96-3968-098 | AEL96009230 | 96-3969-099  | 96-3970-100 |
| Constituent                      | Units         |             |             |             |             |             |              |             |
| Acenaphthylene                   | μg/kg         | <360        |             |             |             | <360        |              |             |
| Anthracene                       | μg/kg         | <360        |             |             |             | <360        |              |             |
| Benzidine                        | μg/kg         | <360        |             |             |             | <360        |              |             |
| Benzo[a]anthracene               | μg/kg         | <360 N1     |             |             |             | <360        |              |             |
| Benzo[a]pyrene                   | μg/kg         | <360 N1     |             |             |             | <360        |              |             |
| Benzo[b]fluoranthene             | µg/kg         | <360 N1     |             |             |             | <360        |              |             |
| Benzo[ghi]perylene               | μg/kg         | <360        |             |             |             | <360        |              |             |
| Benzo[k]fluoranthene             | μg/kg         | <360 N1     |             |             |             | <360        |              |             |
| Bis(2-chlorosthoxy)methane       | μg/kg         | <360        |             |             |             | <360        |              |             |
| Bis(2-chloroethyl)ether          | μ <b>g/kg</b> | <360        |             |             |             | <360        |              |             |
| Bis(2-ethylhexyl)phthalate       | μg/kg         | <360        |             |             |             | <360        |              |             |
| Bromophenyl Phenyl Ether,4-      | μg/kg         | <360        |             |             |             | <360        |              |             |
| Butyl Benzyl Phthalate           | μg/kg         | <360        |             |             |             | <360        |              |             |
| Carbazole                        | μg/kg         |             |             |             |             |             |              |             |
| Chloroaniline,4-                 | μg/kg         |             |             |             |             |             |              |             |
| Chloronaphthalene,2-             | μg/kg         | <360        |             |             |             | <360        |              |             |
| Chlorophenol,2-                  | μg/kg         | <360        |             |             |             | ⊲360        |              |             |
| Chlorophenyl Phenyl Ether,4-     | μg/kg         | <360        |             |             |             | <360        |              |             |
| Chrysene                         | μ <b>g/kg</b> | <360 N1     |             |             |             | ⊲360        |              |             |
| Cresol,2-                        | μg/kg         |             |             |             |             |             |              |             |
| Crosol,4-                        | μg/kg         |             |             |             |             |             |              |             |
| Di-n-butyl Phthalate             | μg/kg         | <360        |             |             |             | <360        |              |             |
| Di-n-octyl Phthalate             | μg/kg         | <360        |             |             |             | <360        |              |             |
| Dibenzo[a,h]anthracene           | μg/kg         | <360        |             |             |             | <360        |              |             |
| Dibenzofuran                     | μg/kg         |             |             |             |             |             |              |             |
| Dichloro-2-butylene, 1, 4-trans- | μg/kg         | Ī           |             |             |             |             |              |             |
| Dichlorobenzidine,3,3'-          | μg/kg         | <360        |             |             | <u> </u>    | <360        | <del> </del> |             |
| Dichlorophenol,2,4-              | μg/kg         | <360        | <u> </u>    |             |             | <360        | 1            |             |

# Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 45 of 66

|                           |               |             |             |             |             |             |             | Page 45 of 66 |
|---------------------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------|
|                           | Location ID   | NK-SB-45      |
|                           | Sample ID     | 1017132     | 1017132     | 1017133     | 1017134     | 1017135     | 1017135     | 1017136       |
|                           | Sample Date   | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996    |
|                           | Sample Time   | 15:40       | 15:40       | 15:50       | 15:53       | 16:07       | 16:07       | 16:15         |
|                           | Sample Depth  | 0' - 2'     | 0' - 2'     | 2' - 4'     | 4' - 6'     | 6' - 8'     | 6' - 8'     | 8' - 10'      |
|                           | Laboratory    | AEL         | LEA         | LEA         | LEA         | AEL         | LEA         | LEA           |
|                           | Lab. Number   | AEL96009229 | 96-3966-093 | 96-3967-094 | 96-3968-098 | AEL96009230 | 96-3969-099 | 96-3970-100   |
| Constituent               | Units         |             |             |             |             |             |             |               |
| Diethyl Phthalate         | μg/kg         | <360        |             |             |             | <360        |             |               |
| Dimethyl Phthalate        | μ <b>g/kg</b> | <360        |             |             |             | <360        |             |               |
| Dimethylphenol,2,4-       | μ <b>g/kg</b> | <360        |             |             |             | <360        |             |               |
| Dinitro-o-cresol, 4,6-    | μg/kg         | <360        |             |             |             | <360        |             |               |
| Dinitrophenol,2,4-        | μg/kg         | <360        |             |             |             | <360        |             |               |
| Dinitrotoluene,2,4-       | μ <b>g/kg</b> | <360        |             |             |             | <360        |             |               |
| Dinitrotoluene,2,6-       | μg/kg         | <360        |             |             |             | <360        |             |               |
| Diphenylhydrazine, 1,2-   | μg/kg         | <360        |             |             |             | <360        |             |               |
| Fluoranthene              | μg/kg         | <360 N1     |             |             |             | <360        |             |               |
| Fluorene                  | μg/kg         | <360        |             |             |             | <360        |             |               |
| Hexachlorobenzene         | μ <b>g/kg</b> | <360        |             |             |             | <360        |             |               |
| Hexachlorobutadiene       | μg/kg         | <360        |             |             |             | <360        |             |               |
| Herachlorocyclopentadiene | µg/kg         | <360        | 1           |             |             | <360        |             |               |
| Hexachloroethane          | μ <b>g/kg</b> | ⊲360        |             |             |             | ⊲360        |             |               |
| Indeno(1,2,3-cd)pyrene    | μ <b>g/kg</b> | <360 N1     |             |             |             | <360        |             |               |
| Isophorone                | μ <b>g/kg</b> | <360        |             |             |             | <360        |             |               |
| Methylnaphthalene,2-      | μ <b>g/kg</b> |             |             |             |             |             |             |               |
| N-nitrosodi-n-propylamine | μg/ <b>kg</b> | <360        |             |             |             | <360        |             |               |
| N-nitrosodimethylamine    | μg/kg         | <360        |             |             |             | <360        |             |               |
| N-nitrosodiphenylamine    | μ <b>g/kg</b> | <360        |             |             |             | <360        |             |               |
| Naphthalene               | μ <b>g/kg</b> | <360        |             |             |             | <360        |             |               |
| Nitroaniline,2-           | μg/kg         |             |             |             |             |             |             |               |
| Nitroaniline,3-           | µg/kg         |             |             |             |             |             |             |               |
| Nitroaniline,4-           | μg/kg         |             |             |             |             |             |             |               |
| Nitrobenzene              | μ <b>g/kg</b> | <360        |             |             |             | <360        |             |               |
| Nitrophenol,2-            | μg/kg         | <360        |             |             |             | <360        |             |               |
| Nitrophenol,4-            | μg/kg         | <360        | 1.          |             |             | <360        |             |               |
| Pentachlorophenol         | μg/kg         | <360        |             |             |             | <360        |             |               |
|                           |               |             | 1           |             |             | 1           |             |               |

## Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 46 of 66

|                                |               |             |             |             |             |             |                                                  | Page 46 01  |
|--------------------------------|---------------|-------------|-------------|-------------|-------------|-------------|--------------------------------------------------|-------------|
|                                | Location ID   | NK-SB-45    | NK-SB-45    | NK-SB-45    | NK-SB-45    | NK-SB-45    | NK-SB-45                                         | NK-SB-45    |
|                                | Sample ID     | 1017132     | 1017132     | 1017133     | 1017134     | 1017135     | 1017135                                          | 1017136     |
|                                | Sample Date   | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996                                       | 08/12/1996  |
|                                | Sample Time   | 15:40       | 15:40       | 15:50       | 15:53       | 16:07       | 16:07                                            | 16:15       |
|                                | Sample Depth  | 0' - 2'     | 0' - 2'     | 2' - 4'     | 4' - 6'     | 6' - 8'     | 6' - 8'                                          | 8' - 10'    |
|                                | Laboratory    | AEL         | LEA         | LEA         | LEA         | AEL         | LEA                                              | LEA         |
|                                | Lab. Number   | AEL96009229 | 96-3966-093 | 96-3967-094 | 96-3968-098 | AEL96009230 | 96-3969-099                                      | 96-3970-100 |
| Constituent                    | Units         |             |             |             |             |             |                                                  |             |
| Phenanthrene                   | μg/kg         | <360 N1     |             |             |             | <360        |                                                  |             |
| Phenol                         | μg/kg         | <360        |             |             |             | <360        |                                                  |             |
| Propane),2,2'-oxybis(2-chloro- | μ <b>g/kg</b> | <360        |             |             |             | ⊲60         |                                                  |             |
| Pyrene                         | μ <b>g/kg</b> | <360 N1     |             |             |             | <360        |                                                  |             |
| Trichlorobenzene, 1, 2, 4-     | μg/kg         | <360        |             |             |             | <360        |                                                  |             |
| Trichlorophenol,2,4,5-         | ha\r          |             |             |             |             |             |                                                  |             |
| Trichlorophenol,2,4,6-         | μg/kg         | <360        |             |             |             | <360        |                                                  |             |
| Acetone                        | μg/kg         | <26         |             |             |             | <29         |                                                  |             |
| Acetonitrile                   | hā/kā         |             |             |             |             |             |                                                  |             |
| Acrolein                       | μg/kg         | <13         |             |             |             | <14         |                                                  |             |
| Acrylonitrile                  | μg/kg         | <13         |             |             |             | <14         |                                                  |             |
| Allyi Chloride                 | μ <b>g/kg</b> |             |             |             |             |             |                                                  |             |
| Benzene                        | μg/kg         | <5.2        |             |             |             | <5.7        |                                                  |             |
| Benzene (screening)            | μg/kg         |             | <7          | <8          | <6          |             | <8 no                                            | <8 nc       |
| Bromobenzene                   | μg/kg         | <5.2        |             |             |             | <5.7        |                                                  |             |
| Bromoform                      | μg/kg         | <5.2        |             |             |             | <5.7        |                                                  |             |
| Carbon Disulfide               | μg/kg         | <5.2        |             |             |             | <5.7        |                                                  |             |
| Carbon Tetrachloride           | μg/kg         | <5.2        |             |             |             | <5.7        |                                                  |             |
| Chlorobenzene                  | μg/kg         | <5.2        |             |             |             | <5.7        |                                                  |             |
| Chlorodibromomethane           | μg/kg         | <5.2        |             |             |             | <5.7        |                                                  |             |
| Chloroethane                   | μg/kg         | <5.2        |             |             |             | <5.7        |                                                  |             |
| Chloroethyl Vinyl Ether,2-     | μg/kg         | <5.2        |             |             |             | <5.7        |                                                  |             |
| Chloroform                     | μg/kg         | <5.2        |             |             |             | <5.7        |                                                  |             |
| Chloroprene, beta-             | μg/kg         |             |             |             |             |             |                                                  |             |
| Chlorotoluene,o-               | μg/kg         | <5.2        |             |             |             | <5.7        |                                                  |             |
| Chlorotoluene,p-               | μg/kg         | <5.2        |             |             |             | <5.7        |                                                  |             |
| Dibromomethane                 | μg/kg         | <5.2        |             |             |             | <5.7        |                                                  |             |
| Dichlorobenzene, 1, 2-         | μg/kg         | <5.2        |             |             |             | <5.7        | <del>                                     </del> | <del></del> |

## Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 47 of 66

|                              |               |             |             |             |             |             |             | rage 47 of 0 |
|------------------------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|
| ,                            | Location ID   | NK-SB-45     |
|                              | Sample ID     | 1017132     | 1017132     | 1017133     | 1017134     | 1017135     | 1017135     | 1017136      |
|                              | Sample Date   | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996   |
|                              | Sample Time   | 15:40       | 15:40       | 15:50       | 15:53       | 16:07       | 16:07       | 16:15        |
|                              | Sample Depth  | 0' - 2'     | 0' - 2'     | 2' - 4'     | 4' - 6'     | 6' - 8'     | 6' - 8'     | 8' - 10'     |
|                              | Laboratory    | AEL         | LEA         | LEA         | LEA         | AEL         | LEA         | LEA          |
|                              | Lab. Number   | AEL96009229 | 96-3966-093 | 96-3967-094 | 96-3968-098 | AEL96009230 | 96-3969-099 | 96-3970-100  |
| Constituent                  | Units         |             |             |             |             |             |             |              |
| Dichlorobenzene, 1,3-        | μ <b>g/kg</b> | <5.2        |             |             |             | <5.7        |             |              |
| Dichlorobenzene, 1,4-        | μg/kg         | <5.2        |             |             |             | <5.7        |             |              |
| Dichlorobromomethane         | μg/kg         | <5.2        |             |             |             | <5.7        |             |              |
| Dichlorodifluoromethane      | μg/kg         | <5.2        |             |             |             | <5.7        |             |              |
| Dichlorosthane,1,1-          | μg/kg         | <5.2        |             |             |             | <5.7        |             |              |
| Dichlorosthane,1,2-          | μg/kg         | <5.2        |             |             |             | <5.7        |             |              |
| Dichlorosthylene, 1, 1-      | μg/kg         | <5.2        |             |             |             | <5.7        |             |              |
| Dichloroethylene,1,2-        | μg/kg         |             |             |             |             |             |             |              |
| Dichloroethylene,1,2-cis-    | μg/kg         | <5.2        |             |             |             | <5.7        |             |              |
| Dichlorosthylene,1,2-trans-  | μg/kg         | <5.2        |             |             |             | <5.7        |             |              |
| Dichloropropane, 1,2-        | μg/kg         | <5.2        |             |             |             | <5.7        |             |              |
| Dichloropropylene,1,3-       | μg/kg         |             |             |             |             |             |             |              |
| Dichloropropylene,1,3-cis-   | μg/kg         | <5.2        |             |             |             | <5.7        |             |              |
| Dichloropropylene,1,3-trans- | μg/kg         | <5.2        |             |             |             | <5.7        |             |              |
| Dioxana,1,4-                 | μg/kg         |             |             |             |             |             |             |              |
| Ethyl Methacrylate           | μg/kg         |             |             |             |             |             |             |              |
| Ethylbenzene                 | μg/kg         | <5.2        |             |             |             | <5.7        |             |              |
| Ethylbenzene (screening)     | μg/kg         |             | <16         | <16         | <12         |             | <17 nc      | <18 nc       |
| Ethylene Dibromide           | μg/kg         |             |             |             |             |             |             |              |
| Hexanone,2-                  | μg/kg         | <13         |             |             |             | <14         |             |              |
| Iodomethane                  | μg/kg         |             |             |             |             |             |             |              |
| Isobutyl Alcohol             | μg/kg         |             |             |             |             |             |             |              |
| Methacrylonitrile            | μg/kg         |             |             |             |             |             |             |              |
| Methyl Bromide               | μg/kg         | <5.2        |             |             |             | <5.7        |             |              |
| Methyl Chloride              | μg/kg         | <5.2        |             |             |             | <5.7        |             |              |
| Methyl Ethyl Ketone          | μg/kg         | <13         |             |             |             | <14         |             |              |
| Methyl Methacrylate          | μg/kg         |             |             |             |             |             |             |              |
| Methyl-2-pentanone,4-        | μg/kg         | <13         | 1           |             |             | <14         |             |              |

### Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 48 of 66

|                                       |               |             |             |             |             |             |             | Page 48 of 6 |
|---------------------------------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|
|                                       | Location ID   | NK-SB-45     |
|                                       | Sample ID     | 1017132     | 1017132     | 1017133     | 1017134     | 1017135     | 1017135     | 1017136      |
|                                       | Sample Date   | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/12/1996   |
|                                       | Sample Time   | 15:40       | 15:40       | 15:50       | 15:53       | 16:07       | 16:07       | 16:15        |
|                                       | Sample Depth  | 0' - 2'     | 0' - 2'     | 2' - 4'     | 4' - 6'     | 6' - 8'     | 6' - 8'     | 8' - 10'     |
|                                       | Laboratory    | AEL         | LEA         | LEA         | LEA         | AEL         | LEA         | LEA          |
|                                       | Lab. Number   | AEL96009229 | 96-3966-093 | 96-3967-094 | 96-3968-098 | AEL96009230 | 96-3969-099 | 96-3970-100  |
| Constituent                           | Units         |             |             |             |             |             |             |              |
| Methyl-tert-butyl Ether               | μg/kg         | <5.2        |             |             |             | <5.7        |             |              |
| Methylene Chloride                    | μg/kg         | <5.2        |             |             |             | <5.7        |             |              |
| Propionitrile                         | μg/kg         |             |             |             |             |             |             |              |
| Styrene                               | μg/kg         | <5.2        |             |             |             | <5.7        |             |              |
| Tetrachloroethane, 1, 1, 1, 2-        | μg/kg         | <5.2        |             |             |             | <5.7        |             |              |
| Tetrachloroethane, 1, 1, 2, 2-        | μg/kg         | <5.2        |             |             |             | <5.7        |             |              |
| Tetrachloroethylene                   | μg/kg         | <5.2        |             |             |             | <5.7        |             |              |
| Tetrachloroethylene (screening)       | μg/kg         |             | <20         | <20         | <16         |             | <22 nc      | <23 nc       |
| Tokuene                               | μg/kg         | <5.2        |             |             |             | <5.7        |             |              |
| Toluene (screening)                   | μ <b>g/kg</b> |             | <11         | <11         | <9          |             | <12 nc      | <13 nc       |
| Trichloroethane,1,1,1-                | μg/kg         | <5.2        |             |             |             | <5.7        |             |              |
| Trichloroethane, 1, 1, 1- (screening) | μg/kg         |             | <199        | <203        | <156        |             | <219 nc     | <229 nc      |
| Trichloroethane, 1, 1, 2-             | μg/kg         | <5.2        |             |             |             | <5.7        |             |              |
| Trichloroethylene                     | μg/kg         | <5.2        |             |             |             | <5.7        |             |              |
| Trichloroethylene (screening)         | μg/kg         |             | <20         | <20         | <15         |             | <22 nc      | <23 nc       |
| Trichloromonofluoromethane            | μg/kg         | <5.2        |             |             |             | <5.7        |             |              |
| Trichloropropane,1,2,3-               | μg/kg         | <5.2        |             |             |             | <5.7        |             |              |
| Vinyl Acetate                         | μg/kg         | <5.2        |             |             |             | <5.7        |             |              |
| Vinyl Chloride                        | μg/kg         | <5.2        |             |             |             | <5.7        |             |              |
| Xylene,o- (screening)                 | μg/kg         |             |             |             |             |             |             |              |
| Xylenes (Total)                       | μg/kg         | <5.2        |             |             |             | <5.7        |             |              |
| Xylenes (Total) (screening)           | μ <b>g/kg</b> | 1           |             |             |             |             |             |              |
| Xylenes,m- & p- (screening)           | μ <b>g/kg</b> |             |             |             |             |             |             |              |
|                                       |               |             |             |             |             |             |             |              |
|                                       |               |             |             |             |             |             |             |              |
|                                       |               |             |             |             |             |             |             |              |
|                                       |               |             |             |             |             |             |             |              |
|                                       |               |             |             |             |             |             |             |              |
|                                       |               |             |             |             |             |             |             |              |

### Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 49 of 66

|                                      |              |             |             |             |              |             |             | Page 49 of 6 |
|--------------------------------------|--------------|-------------|-------------|-------------|--------------|-------------|-------------|--------------|
|                                      | Location ID  | NK-SB-45    | NK-SB-45    | NK-SB-45    | NK-SB-46     | NK-SB-46    | NK-SB-46    | NK-SB-46     |
|                                      | Sample ID    | 1017137     | 1017138     | 1017139     | 1017141      | 1017141     | 1017142     | 1017143      |
|                                      | Sample Date  | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/13/1996   | 08/13/1996  | 08/13/1996  | 08/13/1996   |
|                                      | Sample Time  | 16:21       | 16:29       | 16:35       | 10:40        | 10:40       | 10:50       | 11:00        |
|                                      | Sample Depth | 10' - 12'   | 12' - 14'   | 14' - 15'   | 0' - 2'      | 0' - 2'     | 2' - 4'     | 4' - 6'      |
|                                      | Laboratory   | LEA         | LEA         | LEA         | AEL          | LEA         | LEA         | LEA          |
|                                      | Lab. Number  | 96-3971-101 | 96-3972-102 | 96-3973-103 | AEL96009231  | 96-3976-106 | 96-3977-107 | 96-3978-108  |
| Constituent                          | Units        |             |             |             |              |             |             |              |
| Date Metals Analysed                 |              |             |             |             | 08/22/1996   |             |             |              |
| Date Organics Analysed               | •            | 08/16/1996  | 08/16/1996  | 08/16/1996  | 08/23/1996   | 08/16/1996  | 08/16/1996  | 08/16/1996   |
| Date PCBs Analysed                   | •            |             |             |             |              |             |             |              |
| Date Physical Analysed               | •            |             |             |             | 08/30/1996   |             |             |              |
| Date Semi-volatile Organics Analysed |              |             |             |             | 09/10/1996   |             |             |              |
| Arsenic                              | mg/kg        |             |             |             | <1.1         |             |             |              |
| Barium                               | mg/kg        |             |             |             | 20.1         |             |             |              |
| Beryllium                            | mg/kg        |             |             |             |              |             |             |              |
| Cadmium                              | mg/kg_       |             |             |             | <3.29        |             |             |              |
| Chromium                             | mg/kg        |             |             |             | <5.48        |             |             |              |
| Chromium (Total)                     | mg/kg        |             |             |             |              |             |             |              |
| Copper                               | mg/kg        |             |             |             |              |             |             |              |
| Lead                                 | mg/kg        |             |             |             | <21.9        |             |             |              |
| Mercury                              | mg/kg        |             |             |             | 0.233        |             |             |              |
| Nickel                               | mg/kg        |             |             |             | <11          |             |             |              |
| Selenium                             | mg/kg        |             |             |             | <1.1         |             |             |              |
| Silver                               | mg/kg        |             |             |             | <5.48        |             |             |              |
| Zinc                                 | mg/kg        |             |             |             | 20.6         |             |             |              |
| PCB 1016                             | μg/kg        |             |             |             |              |             |             |              |
| PCB 1221                             | ha/ka        |             |             |             |              |             |             |              |
| PCB 1232                             | μg/kg        |             |             |             |              |             |             |              |
| PCB 1242                             | μg/kg        |             |             |             |              |             |             |              |
| PCB 1248                             | μg/kg        |             |             |             |              |             |             |              |
| PCB 1254                             | μg/kg        |             |             |             |              |             |             |              |
| PCB 1260                             | μg/kg        | 1           |             |             |              |             |             |              |
| Dibromo-3-chloropropane, 1,2-        | μg/kg        |             |             |             |              |             |             |              |
| Total Petroleum Hydrocarbons         | mg/kg        |             |             |             | <35.0        |             |             |              |
| Acenaphthene                         | μg/kg        | 1           |             |             | ⊲350         |             |             |              |
|                                      |              |             |             |             | <del> </del> |             |             |              |

## Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 50 of 66

|                                 |                |             |             |             |             |             |                | Page 50 of  |
|---------------------------------|----------------|-------------|-------------|-------------|-------------|-------------|----------------|-------------|
|                                 | Location ID    | NK-SB-45    | NK-SB-45    | NK-SB-45    | NK-SB-46    | NK-SB-46    | NK-SB-46       | NK-SB-46    |
|                                 | Sample ID      | 1017137     | 1017138     | 1017139     | 1017141     | 1017141     | 1017142        | 1017143     |
|                                 | Sample Date    | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/13/1996  | 08/13/1996  | 08/13/1996     | 08/13/1996  |
|                                 | Sample Time    | 16:21       | 16:29       | 16:35       | 10:40       | 10:40       | 10:50          | 11:00       |
|                                 | Sample Depth   | 10' - 12'   | 12' - 14'   | 14' - 15'   | 0' - 2'     | 0' - 2'     | 2' - 4'        | 4' - 6'     |
|                                 | Laboratory     | LEA         | LEA         | LEA         | AEL         | LEA         | LEA            | LEA         |
|                                 | Lab. Number    | 96-3971-101 | 96-3972-102 | 96-3973-103 | AEL96009231 | 96-3976-106 | 96-3977-107    | 96-3978-108 |
| Constituent                     | Units          |             |             |             |             |             |                |             |
| Acenaphthylene                  | μ <b>g/k</b> g |             |             |             | <350        |             |                |             |
| Anthracene                      | μg/kg          |             |             |             | <350        |             |                |             |
| Benzidine                       | μg/kg          |             |             |             | <350        |             |                |             |
| Benzo[a]anthracene              | μ <b>g/kg</b>  |             |             |             | <350        |             |                |             |
| Benzo[a]pyrene                  | μg/kg          |             |             |             | <350        |             |                |             |
| Benzo[b]fluoranthene            | μg/kg          |             |             |             | <350        |             |                |             |
| Benzo[ghi]perylene              | μg/kg          |             |             |             | <350        |             |                |             |
| Benzo[k]fluoranthene            | μg/kg          |             |             |             | <350        |             |                |             |
| Bis(2-chloroethoxy)methane      | μg/kg          |             |             |             | ⊲50         |             |                |             |
| Bis(2-chloroethyl)ether         | μg/kg          |             |             |             | ⊲50         |             |                |             |
| Bis(2-ethylhexyl)phthalate      | μg/kg          |             |             |             | ⊲350        |             |                |             |
| Bromophenyl Phenyl Ether,4-     | μg/kg          |             |             |             | ⊲50         |             |                |             |
| Butyl Benzyl Phthalate          | μg/kg          |             |             |             | ⊲350        |             |                |             |
| Carbazole                       | μg/kg          |             |             |             |             |             |                |             |
| Chloroaniline,4-                | μg/kg          |             |             |             |             |             |                |             |
| Chloronaphthalene,2-            | μ <b>g/kg</b>  |             |             |             | <350        |             |                |             |
| Chlorophenoi,2-                 | μg/kg          |             |             |             | <350        |             |                |             |
| Chlorophenyi Phenyi Ether,4-    | μg/kg          | 1           |             |             | <350        |             |                |             |
| Chrysene                        | μg/kg          |             |             |             | <350        |             |                |             |
| Cresol,2-                       | μg/kg          |             |             |             |             |             |                |             |
| Cresol,4-                       | μg/kg          |             |             |             |             |             |                |             |
| Di-n-butyi Phthalate            | μg/kg          |             |             |             | <350        |             |                |             |
| Di-n-octyl Phthalate            | μg/kg          | 1           |             |             | ⊲350        |             |                |             |
| Dibenzo[a,h]anthracene          | μg/kg          |             |             |             | <350        |             |                | 1           |
| Dibenzofuran                    | μg/kg          |             |             |             |             | 1           |                |             |
| Dichloro-2-butylene, 1,4-trans- | μg/kg          |             |             |             |             |             |                |             |
| Dichlorobenzidine,3,3'-         | μg/kg          |             |             |             | <350        |             |                | <u> </u>    |
| Dichlorophenol,2,4-             | μg/kg          | 1           |             |             | <350        |             | <del>-  </del> |             |



### Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 51 of 66

|                           |               |             |             |             |             |             |             | Page 31 of  |
|---------------------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                           | Location ID   | NK-SB-45    | NK-SB-45    | NK-SB-45    | NK-SB-46    | NK-SB-46    | NK-SB-46    | NK-SB-46    |
|                           | Sample ID     | 1017137     | 1017138     | 1017139     | 1017141     | 1017141     | 1017142     | 1017143     |
|                           | Sample Date   | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/13/1996  | 08/13/1996  | 08/13/1996  | 08/13/1996  |
|                           | Sample Time   | 16:21       | 16:29       | 16:35       | 10:40       | 10:40       | 10:50       | 11:00       |
|                           | Sample Depth  | 10' - 12'   | 12' - 14'   | 14' - 15'   | 0' - 2'     | 0' - 2'     | 2' - 4'     | 4' - 6'     |
|                           | Laboratory    | LEA         | LEA         | LEA         | AEL         | LEA         | LEA         | LEA         |
|                           | Lab. Number   | 96-3971-101 | 96-3972-102 | 96-3973-103 | AEL96009231 | 96-3976-106 | 96-3977-107 | 96-3978-108 |
| Constituent               | Units         |             |             |             |             |             |             |             |
| Diethyl Phthalate         | μg/kg         |             |             |             | <350        |             |             |             |
| Dimethyl Phthalate        | μg/kg         |             |             |             | <350        |             |             |             |
| Dimethylphenol,2,4-       | μg/kg         |             |             |             | ⊲350        |             |             |             |
| Dinitro-o-cresol, 4,6-    | μg/kg         |             |             |             | <350        |             |             |             |
| Dinitrophenol,2,4-        | μg/kg         |             |             |             | <350        |             |             |             |
| Dinitrotohuene,2,4-       | μg/kg         |             |             |             | <350        |             |             |             |
| Dinitrotoluene,2,6-       | μg/kg         |             |             |             | <350        |             |             |             |
| Diphenylhydrazine,1,2-    | μg/kg         |             |             |             | <350        |             |             |             |
| Fluoranthene              | μg/kg         |             |             |             | ⊲50         |             |             |             |
| Fluorene                  | μg/kg         |             |             |             | ⊲350        |             |             |             |
| Hexachlorobenzene         | μg/kg         |             |             |             | ⊲350        |             |             |             |
| Herachlorobutadiene       | μg/kg         |             |             |             | <350        |             |             |             |
| Herachlorocyclopentadiene | μg/kg         |             |             |             | ⊲50         |             |             |             |
| Hexachlorosthane          | μg/kg         |             |             |             | ⊲350        |             |             |             |
| Indeno(1,2,3-cd)pyrene    | μg/kg         |             |             |             | <350        |             |             |             |
| Isophorone                | μg/kg         |             |             |             | ⊲350        |             |             |             |
| Methylnaphthalene,2-      | μ <b>g/kg</b> |             |             |             |             |             |             |             |
| N-nitrosodi-n-propylamine | μg/kg         |             |             |             | ⊲50         |             |             |             |
| N-nitrosodimethylamine    | μg/kg         |             |             |             | <350        |             |             |             |
| N-nitrosodiphenylamine    | μg/kg         |             |             |             | ⊲350        |             |             |             |
| Naphthalene               | μg/kg         |             |             |             | <350        |             |             |             |
| Nitroaniline,2-           | μg/kg         |             |             |             |             |             |             |             |
| Nitroaniline,3-           | μg/kg         |             |             |             |             |             |             |             |
| Nitroeniline,4-           | μg/kg         |             |             |             |             |             |             |             |
| Nitrobenzene              | μg/kg         |             |             |             | <350        |             |             |             |
| Nitrophenol,2-            | μg/kg         |             | 1           |             | ⊲350        |             |             |             |
| Nitrophenol,4-            | μg/kg         |             |             |             | ⊲350        |             |             |             |
| Pentachlorophenol         | μg/kg         | 1           |             |             | ⊲350        |             |             |             |

## Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 52 of 66

|                                |               |             |             |             |             |             |             | Page 52 of 6 |
|--------------------------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|
|                                | Loostion ID   | NK-SB-45    | NK-SB-45    | NK-SB-45    | NK-SB-46    | NK-SB-46    | NK-SB-46    | NK-SB-46     |
|                                | Sample ID     | 1017137     | 1017138     | 1017139     | 1017141     | 1017141     | 1017142     | 1017143      |
|                                | Sample Date   | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/13/1996  | 08/13/1996  | 08/13/1996  | 08/13/1996   |
|                                | Sample Time   | 16:21       | 16:29       | 16:35       | 10:40       | 10:40       | 10:50       | 11:00        |
|                                | Sample Depth  | 10' - 12'   | 12' - 14'   | 14' - 15'   | 0' - 2'     | 0' - 2'     | 2' - 4'     | 4' - 6'      |
|                                | Laboratory    | LEA         | LEA         | LEA         | AEL         | LEA         | LEA         | LEA          |
|                                | Lab. Number   | 96-3971-101 | 96-3972-102 | 96-3973-103 | AEL96009231 | 96-3976-106 | 96-3977-107 | 96-3978-108  |
| Constituent                    | Units         |             |             |             |             |             |             |              |
| Phenanthrene                   | μg/kg         |             |             |             | <350        |             |             |              |
| Phenol                         | μg/kg         |             |             |             | <350        |             |             |              |
| Propane),2,2'-oxybis(2-chloro- | μg/kg         |             |             |             | <350        |             |             |              |
| Pyrene                         | μ <b>g/kg</b> |             |             |             | <350        |             |             |              |
| Trichlorobenzene, 1,2,4-       | μ <b>g/kg</b> |             |             |             | ⊲50         |             |             |              |
| Trichlorophenol,2,4,5-         | µg/kg         |             |             |             |             |             |             |              |
| Trichlorophenol,2,4,6-         | μg/kg         |             |             |             | <350        |             |             |              |
| Acetone                        | μ <b>g/kg</b> |             |             |             | <23         |             |             |              |
| Acetonitrile                   | μ <b>g/kg</b> |             |             |             |             |             |             |              |
| Acrolein                       | μg/kg         |             |             |             | <11         |             |             |              |
| Acrylonitrile                  | μg/kg         |             |             |             | <11         |             |             |              |
| Allyl Chloride                 | μg/kg         |             |             |             |             |             |             |              |
| Benzene                        | μ <b>g/kg</b> |             |             |             | <4.5        |             |             |              |
| Benzene (screening)            | μg/kg         | <7          | <7          | <8          |             | <8          | <8          | <7           |
| Bromobenzene                   | μg/kg         |             |             |             | <4.5        |             |             |              |
| Bromoform                      | μg/kg         |             |             |             | <4.5        |             |             |              |
| Carbon Disulfide               | μ <b>g/kg</b> |             |             |             | <4.5        |             |             |              |
| Carbon Tetrachloride           | μg/kg         |             |             |             | <4.5        |             |             |              |
| Chlorobenzene                  | μ <b>g/kg</b> |             |             |             | <4.5        |             |             |              |
| Chlorodibromomethane           | μ <b>g/kg</b> |             |             |             | <4.5        |             |             |              |
| Chloroethane                   | μg/kg         |             |             |             | <4.5        |             |             |              |
| Chloroethyl Vinyl Ether,2-     | μg/kg         |             |             |             | <4.5        |             |             |              |
| Chloroform                     | μg/kg         |             |             |             | <4.5        |             |             |              |
| Chloroprene, beta-             | μg/kg         |             |             |             |             |             |             |              |
| Chlorotoluene,o-               | μg/kg         |             |             |             | <4.5        |             |             |              |
| Chlorotoluene,p-               | μ <b>g/kg</b> |             |             |             | <4.5        |             |             |              |
| Dibromomethane                 | μg/kg         |             |             |             | <4.5        |             |             |              |
| Dichlorobenzene, 1, 2-         | μg/kg         |             |             |             | <4.5        |             |             |              |



# Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 53 of 66

|                                |               |             |             |             |             |              |             | Page 53 of 66 |
|--------------------------------|---------------|-------------|-------------|-------------|-------------|--------------|-------------|---------------|
|                                | Location ID   | NK-SB-45    | NK-SB-45    | NK-SB-45    | NK-SB-46    | NK-SB-46     | NK-SB-46    | NK-SB-46      |
|                                | Sample ID     | 1017137     | 1017138     | 1017139     | 1017141     | 1017141      | 1017142     | 1017143       |
|                                | Sample Date   | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/13/1996  | 08/13/1996   | 08/13/1996  | 08/13/1996    |
|                                | Sample Time   | 16:21       | 16:29       | 16:35       | 10:40       | 10:40        | 10:50       | 11:00         |
|                                | Sample Depth  | 10' - 12'   | 12' - 14'   | 14' - 15'   | 0' - 2'     | 0' - 2'      | 2' - 4'     | 4' - 6'       |
|                                | Laboratory    | LEA         | LEA         | LEA         | AEL         | LEA          | LEA         | LEA           |
|                                | Lab, Number   | 96-3971-101 | 96-3972-102 | 96-3973-103 | AEL96009231 | 96-3976-106  | 96-3977-107 | 96-3978-108   |
| Constituent                    | Units         |             |             |             |             |              |             |               |
| Dichlorobenzene, 1,3-          | μ <b>g/kg</b> |             |             |             | <4.5        |              |             |               |
| Dichlorobenzene, 1,4-          | μg/kg         |             |             |             | <4.5        |              |             |               |
| Dichlorobromomethane           | μg/kg         |             |             |             | <4.5        |              |             |               |
| Dichlorodifluoromethane        | μ <b>g/kg</b> |             |             |             | <4.5        |              |             |               |
| Dichloroethane,1,1-            | μg/kg         |             |             |             | <4.5        |              |             |               |
| Dichloroethane,1,2-            | μg/kg         |             |             |             | <4.5        |              |             |               |
| Dichloroethylene,1,1-          | μ <b>g/kg</b> |             |             |             | <4.5        |              |             |               |
| Dichloroethylene,1,2-          | μg/kg         |             |             |             |             |              |             |               |
| Dichloroethylene,1,2-cis-      | μ <b>g/kg</b> |             |             |             | <4.5        |              |             |               |
| Dichloroethylene, 1,2-trans-   | μg/kg         |             |             |             | <4.5        |              |             |               |
| Dichloropropane, 1,2-          | μ <b>g/kg</b> |             |             |             | <4.5        |              |             |               |
| Dichloropropylene,1,3-         | μg/kg         |             |             |             |             |              |             |               |
| Dichloropropylene,1,3-cis-     | μ <b>g/kg</b> |             |             |             | <4.5        |              |             |               |
| Dichloropropylene, 1, 3-trans- | μ <b>g/kg</b> |             |             |             | <4.5        |              |             |               |
| Dioxane,1,4-                   | μg/kg         |             |             |             |             |              |             |               |
| Ethyl Methacrylate             | μg/kg         |             |             |             |             |              |             |               |
| Ethylbenzene                   | μg/kg         |             |             |             | <4.5        |              |             |               |
| Ethylbenzene (screening)       | μg/kg         | <15         | <15         | <17         |             | <17          | <17         | <16           |
| Ethylene Dibromide             | μg/kg         |             |             |             |             |              |             |               |
| Hexanone,2-                    | μ <b>g/kg</b> |             |             |             | <11         |              |             |               |
| Iodomethane                    | μg/kg         |             |             |             |             |              |             |               |
| Isobutyl Alcohol               | μg/kg         |             |             |             |             |              |             |               |
| Methacrylonitrile              | μg/kg         |             |             |             |             |              |             |               |
| Methyl Bromide                 | μg/kg         |             |             |             | <4.5        |              |             |               |
| Methyl Chloride                | μg/kg         |             |             |             | <4.5        |              |             |               |
| Methyl Ethyl Ketone            | μ <b>g/kg</b> |             |             |             | <11         |              |             |               |
| Methyl Methacrylate            | μg/kg         |             |             |             |             |              |             |               |
| Methyl-2-pentanone,4-          | μg/kg         |             |             |             | <11         |              |             |               |
|                                |               | 1           | <del></del> |             | <del></del> | <del> </del> | <del></del> | <del></del>   |

## Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 54 of 66

|                                       |               |             |             |             |              |               |             | Page 34 0   |
|---------------------------------------|---------------|-------------|-------------|-------------|--------------|---------------|-------------|-------------|
|                                       | Location ID   | NK-SB-45    | NK-SB-45    | NK-SB-45    | NK-SB-46     | NK-SB-46      | NK-SB-46    | NK-SB-46    |
|                                       | Sample ID     | 1017137     | 1017138     | 1017139     | 1017141      | 1017141       | 1017142     | 1017143     |
|                                       | Sample Date   | 08/12/1996  | 08/12/1996  | 08/12/1996  | 08/13/1996   | 08/13/1996    | 08/13/1996  | 08/13/1996  |
|                                       | Sample Time   | 16:21       | 16:29       | 16:35       | 10:40        | 10:40         | 10:50       | 11:00       |
|                                       | Sample Depth  | 10' - 12'   | 12' - 14'   | 14' - 15'   | 0' - 2'      | 0' - 2'       | 2' - 4'     | 4' - 6'     |
|                                       | Laboratory    | LEA         | LEA         | LEA         | AEL          | LEA           | LEA         | LEA         |
|                                       | Lab. Number   | 96-3971-101 | 96-3972-102 | 96-3973-103 | AEL96009231  | 96-3976-106   | 96-3977-107 | 96-3978-108 |
| Constituent                           | Units         |             |             |             |              |               |             |             |
| Methyl-tert-butyl Ether               | μg/kg         |             |             |             | <4.5         |               |             |             |
| Methylene Chloride                    | μg/kg         |             |             |             | <7.9         |               |             |             |
| Propionitrile                         | μg/kg         |             |             |             |              |               |             |             |
| Styrene                               | μg/kg         |             |             |             | <4.5         |               |             |             |
| Tetrachloroethane, 1, 1, 1, 2-        | μg/kg         |             |             |             | <4.5         |               |             |             |
| Tetrachloroethane,1,1,2,2-            | μg/kg         |             |             |             | <4.5         |               |             |             |
| Tetrachloroethylene                   | μg/kg         |             |             |             | <4.5         |               |             |             |
| Tetrachloroethylene (screening)       | μg/kg         | <19         | <19         | <21         |              | <22           | <21         | <20         |
| Toluene                               | μg/kg         |             |             |             | <4.5 N1      |               |             |             |
| Toluene (screening)                   | μg/kg         | <10         | <11         | <12         |              | <12           | <12         | <11         |
| Trichloroethane, 1, 1, 1-             | μg/kg         |             |             |             | <4.5         |               |             |             |
| Trichloroethane, 1, 1, 1- (screening) | μg/kg         | <185        | <188        | <211        |              | <215          | <211        | <199        |
| Trichloroethane, 1, 1, 2-             | μ <b>g/kg</b> |             |             |             | <4.5         |               |             |             |
| Trichloroethylene                     | μg/ <b>kg</b> |             |             |             | <4.5         |               |             |             |
| Trichloroethylene (screening)         | μg/kg         | <18         | <19         | <21         |              | <21           | <21         | <20         |
| Trichloromonofluoromethane            | μg/kg         |             |             |             | <4.5         |               |             |             |
| Trichloropropane, 1, 2, 3-            | μg/kg         |             |             |             | <4.5         |               |             |             |
| Vinyl Acetate                         | μg/kg         |             |             |             | <4.5         |               |             |             |
| Vinyl Chloride                        | μg/kg         |             |             |             | <4.5         |               |             |             |
| Xylene,o- (screening)                 | μg/kg         |             |             |             |              |               |             |             |
| Xylenes (Total)                       | μg/kg         |             |             |             | <4.5 N1      |               |             |             |
| Xylenes (Total) (screening)           | μg/kg         |             |             |             |              |               |             |             |
| Xylenes,m- & p- (screening)           | μg/kg         |             |             |             |              |               |             |             |
|                                       | 1:3-3         |             |             |             | 1            | † <del></del> |             |             |
|                                       |               |             |             |             | <u> </u>     |               |             |             |
|                                       |               | T           |             |             |              | †             | 1           |             |
|                                       |               |             |             |             |              | <del> </del>  |             |             |
|                                       |               | <u> </u>    |             | <del></del> | <del> </del> | +             |             |             |

## Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 55 of 66

|                                      |              |                    |             |             |             |             |             | Page 33 of G |
|--------------------------------------|--------------|--------------------|-------------|-------------|-------------|-------------|-------------|--------------|
|                                      | Location ID  | NK-SB-46           | NK-SB-46    | NK-SB-46    | NK-SB-46    | NK-SB-46    | NK-SB-46    | NK-SS-14     |
|                                      | Sample ID    | 1017144            | 1017144     | 1017145     | 1017146     | 1017147     | 1017148     | 01015061793  |
|                                      | Sample Date  | 08/13/1996         | 08/13/1996  | 08/13/1996  | 08/13/1996  | 08/13/1996  | 08/13/1996  | 06/17/1993   |
|                                      | Sample Time  | 11:10              | 11:10       | 11:20       | 11:30       | 11:40       | 00:50       |              |
|                                      | Sample Depth | 6' - 8'            | 6' - 8'     | 8' - 10'    | 10' - 12'   | 12' - 14'   | 14' - 15'   |              |
|                                      | Laboratory   | AEL                | LEA         | LEA         | LEA         | LEA         | LEA         | ENS          |
|                                      | Lab. Number  | AEL96009232        | 96-3979-109 | 96-3980-110 | 96-3981-111 | 96-3982-112 | 96-3983-113 | 0291110001SA |
| Constituent                          | Units        |                    |             |             |             |             |             |              |
| Date Metals Analysed                 | •            | 08/22/1996         |             |             |             |             |             | 06/28/1993   |
| Date Organics Analysed               | •            | 08/23/1996         | 08/16/1996  | 08/16/1996  | 08/16/1996  | 08/16/1996  | 08/16/1996  | 06/23/1993   |
| Date PCBs Analysed                   | •            |                    |             |             |             |             |             | 06/28/1993   |
| Date Physical Analysed               | •            | <b>08/3</b> 0/1996 |             |             |             |             |             |              |
| Date Semi-volatile Organics Analysed |              | 09/10/1996         |             |             |             |             |             | 06/25/1993   |
| Arsenic                              | mg/kg        | <0.98              |             |             |             |             |             | <0.54        |
| Barium                               | mg/kg        | 13.5               |             |             |             |             |             | 27.8         |
| Berytlium                            | mg/kg        |                    |             |             |             |             |             | 0.23         |
| Cadmium                              | mg/kg        | <2.95              |             |             |             |             |             | <0.54        |
| Chromium                             | mg/kg        | 6.3                |             |             |             |             |             |              |
| Chromium (Total)                     | mg/kg        | 1                  |             |             |             |             |             | 5.5          |
| Copper                               | mg/kg        |                    | 1           |             |             |             |             |              |
| Lead                                 | mg/kg        | <19.7              |             |             |             |             |             | 3.6          |
| Mercury                              | mg/kg        | <0.197             |             |             |             |             |             | <0.11        |
| Nickel                               | mg/kg        | <9.8               |             |             |             |             |             | 4.7          |
| Selenium                             | mg/kg        | <0.984             |             |             |             |             |             | <0.54        |
| Silver                               | mg/kg        | <4.92              |             |             |             |             |             | <1.1         |
| Zinc                                 | mg/kg        | 16.5               |             |             |             |             |             | 13.8         |
| PCB 1016                             | μg/kg        |                    |             |             |             |             |             | <8.9         |
| PCB 1221                             | μg/kg        |                    |             |             |             |             |             | <8.9         |
| PCB 1232                             | μg/kg        |                    |             |             |             |             |             | <8.9         |
| PCB 1242                             | μg/kg        |                    |             |             |             |             |             | <8.9         |
| PCB 1248                             | μg/kg        |                    |             |             |             |             |             | <8.9         |
| PCB 1254                             | μg/kg        |                    |             |             |             |             | J-5 1W      | <8.9         |
| PCB 1260                             | μg/kg        |                    |             |             |             |             |             | <8.9         |
| Dibromo-3-chloropropane, 1,2-        | µg/kg        |                    |             |             |             |             |             |              |
| Total Petroleum Hydrocarbons         | mg/kg        | <35.4              |             |             |             |             |             | 1            |
| Acenaphthene                         | μg/kg        | ⊲350               |             |             |             | <del></del> |             | ⊲60          |

# Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 56 of 66

|                                 |                      |             |             |             |             |             |             | Page 36 OI   |
|---------------------------------|----------------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|
|                                 | Location ID          | NK-SB-46    | NK-SB-46    | NK-SB-46    | NK-SB-46    | NK-SB-46    | NK-SB-46    | NK-SS-14     |
|                                 | Sample ID            | 1017144     | 1017144     | 1017145     | 1017146     | 1017147     | 1017148     | 01015061793  |
|                                 | Sample Date          | 08/13/1996  | 08/13/1996  | 08/13/1996  | 08/13/1996  | 08/13/1996  | 08/13/1996  | 06/17/1993   |
|                                 | Sample Time          | 11:10       | 11:10       | 11:20       | 11:30       | 11:40       | 00:50       |              |
|                                 | Sample Depth         | 6' - 8'     | 6' - 8'     | 8' - 10'    | 10' - 12'   | 12' - 14'   | 14' - 15'   |              |
|                                 | Laboratory           | AEL         | LEA         | LEA         | LEA         | LEA         | LEA         | ENS          |
|                                 | Lab. Number          | AEL96009232 | 96-3979-109 | 96-3980-110 | 96-3981-111 | 96-3982-112 | 96-3983-113 | 0291110001SA |
| Constituent                     | Units                |             |             |             |             |             |             |              |
| Acenaphthylene                  | μ <b>g/kg</b>        | <350        |             |             |             |             |             | <360         |
| Anthracene                      | μ <b>g/kg</b>        | <350        |             |             |             |             |             | <360         |
| Benzidine                       | μg/kg                | <350        |             |             |             |             |             |              |
| Benzo[a]anthracene              | μ <b>g/kg</b>        | <350        |             |             |             |             |             | <360         |
| Benzo[a]pyrene                  | μg/kg                | <350        |             |             |             |             |             | <360         |
| Benzo[b]fluoranthene            | μg/kg                | <350        |             |             |             |             |             | <360         |
| Benzo[ghi]perylene              | μ <b>g/kg</b>        | ⊲50         |             |             |             |             |             | <360         |
| Benzo[k]fluoranthene            | μg/kg                | <350        |             |             |             |             |             | <360         |
| Bis(2-chlorosthoxy)methane      | μ <b>g/kg</b>        | <350        |             |             |             |             |             | <360         |
| Bis(2-chloroethyl)ether         | μ <b>g/kg</b>        | <350        |             |             |             |             |             | <360         |
| Bis(2-othylhexyl)phthalate      | μg/kg                | <350        |             |             |             |             |             | <360         |
| Bromophenyl Phenyl Ether,4-     | μg/ <b>kg</b>        | ⊲350        |             |             |             |             |             | <360         |
| Butyl Benzyl Phthalate          | μ <b>g/<b>kg</b></b> | <350        |             |             |             |             |             | <360         |
| Carbazole                       | μg/kg                |             |             |             |             |             |             | <360         |
| Chloroaniline,4-                | μg/kg                |             |             |             |             |             |             | <360         |
| Chloronaphthalene,2-            | μg/kg                | <350        |             |             |             |             |             | <360         |
| Chlorophenol,2-                 | μg/kg                | <350        |             |             |             |             |             | <360         |
| Chlorophenyl Phenyl Ether,4-    | μg/kg                | <350        |             |             |             |             |             | <360         |
| Chrysene                        | μg/kg                | <350        |             |             |             |             |             | <360         |
| Cresol,2-                       | μg/kg                |             |             |             |             |             |             | <360         |
| Cresol,4-                       | μg/kg                |             |             |             |             |             |             | <360         |
| Di-n-butyl Phthalate            | μg/kg                | <350        |             |             |             |             |             | <360         |
| Di-n-octyl Phthalate            | μg/kg                | <350        |             |             |             |             |             | <360         |
| Dibenzo[a,h]anthracene          | μg/kg                | <350        |             |             |             |             |             | <360         |
| Dibenzofuran                    | μg/kg                |             |             |             |             |             |             | ⊲360         |
| Dichloro-2-butylene, 1,4-trans- | μg/kg                |             |             |             |             |             |             |              |
| Dichlorobenzidine,3,3'-         | μg/kg                | <350        |             |             |             |             |             | <710         |
| Dichlorophenol,2,4-             | μg/kg                | <350        |             |             |             |             |             | <360         |



### Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 57 of 66

|                           |               |             |             |                |             |             |             | Page 37 of   |
|---------------------------|---------------|-------------|-------------|----------------|-------------|-------------|-------------|--------------|
|                           | Location ID   | NK-SB-46    | NK-SB-46    | NK-SB-46       | NK-SB-46    | NK-SB-46    | NK-SB-46    | NK-SS-14     |
|                           | Sample ID     | 1017144     | 1017144     | 1017145        | 1017146     | 1017147     | 1017148     | 01015061793  |
|                           | Sample Date   | 08/13/1996  | 08/13/1996  | 08/13/1996     | 08/13/1996  | 08/13/1996  | 08/13/1996  | 06/17/1993   |
|                           | Sample Time   | 11:10       | 11:10       | 11:20          | 11:30       | 11:40       | 00:50       |              |
|                           | Sample Depth  | 6' - 8'     | 6' - 8'     | 8' - 10'       | 10' - 12'   | 12' - 14'   | 14' - 15'   |              |
|                           | Laboratory    | AEL         | LEA         | LEA            | LEA         | LEA         | LEA         | ENS          |
|                           | Lab. Number   | AEL96009232 | 96-3979-109 | 96-3980-110    | 96-3981-111 | 96-3982-112 | 96-3983-113 | 0291110001SA |
| Constituent               | Units         |             |             |                |             |             |             |              |
| Diethyl Phthalate         | μg/kg         | <350        |             |                |             |             |             | ⊲360         |
| Dimethyl Phthalate        | μg/kg         | <350        |             |                |             |             |             | <360         |
| Dimethylphenol,2,4-       | μg/kg         | <350        |             |                |             |             |             | <360         |
| Dinitro-o-cresol, 4,6-    | μ <b>g/kg</b> | <350        |             |                |             |             |             | <1700        |
| Dinitrophenol,2,4-        | μg/kg         | <350        |             |                |             |             |             | <1700        |
| Dinitrotoluene,2,4-       | μg/kg         | ⊲50         |             |                |             |             |             | <360         |
| Dinitrotohuene,2,6-       | μg/kg         | ⊲50         |             |                |             |             |             | <360         |
| Diphenylhydrazine,1,2-    | μg/kg         | <350        |             |                |             |             |             |              |
| Fluoranthene              | μg/kg         | <350        |             |                |             |             |             | <360         |
| Phyorene                  | μg/kg         | <350        |             |                |             |             |             | <360         |
| Hexachlorobenzene         | μg/kg         | <350        |             |                |             |             |             | ⊲360         |
| Hexachlorobutadiene       | μg/kg         | <350        |             |                |             |             |             | ⊲360         |
| Herachlorocyclopentadiene | μg/kg         | ⊲50         |             |                |             |             |             | <360         |
| Hexachloroethane          | μg/kg         | ⊲50         |             |                |             |             |             | <360         |
| Indeno(1,2,3-od)pyrene    | μg/kg         | ⊲50         |             |                |             |             |             | ⊲60          |
| Isophorone                | μg/kg         | ⊲50         |             |                |             |             |             | <360         |
| Methylnaphthalene,2-      | μg/kg         | I.          |             |                |             |             |             | ⊲60          |
| N-nitrosodi-n-propylamine | μg/kg         | ⊲50         |             |                |             |             |             | <360         |
| N-nitrosodimethylamine    | μg/kg         | <350        |             |                |             |             |             |              |
| N-nitrosodiphenylamine    | μg/kg         | <350        |             |                |             |             |             | ⊲360         |
| Napinhalene               | μg/kg         | <350        |             |                |             |             |             | ⊲360         |
| Nitroaniline,2-           | μg/kg         |             |             |                |             |             |             | <1700        |
| Nitroaniline,3-           | μg/kg         |             |             |                |             |             |             | <1700        |
| Nitroeniline,4-           | μg/kg         |             |             |                |             |             |             | <1700        |
| Nitrobenzene              | μ <b>g/kg</b> | <350        |             |                |             |             |             | <360         |
| Nitrophenol,2-            | μg/kg         | ⊲350        | 1           |                |             |             |             | <360         |
| Nitrophenol,4-            | μg/kg         | <350        | 1           |                |             |             |             | <1700        |
| Pentachiorophenol         | μg/kg         | <350        | <b>T</b>    | <del>-  </del> |             | 1           |             | <1700        |

# Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 58 of 66

|                                |               |             |             |             |             |             |             | Page 38 01   |
|--------------------------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|
|                                | Location ID   | NK-SB-46    | NK-SB-46    | NK-SB-46    | NK-SB-46    | NK-SB-46    | NK-SB-46    | NK-SS-14     |
|                                | Sample ID     | 1017144     | 1017144     | 1017145     | 1017146     | 1017147     | 1017148     | 01015061793  |
|                                | Sample Date   | 08/13/1996  | 08/13/1996  | 08/13/1996  | 08/13/1996  | 08/13/1996  | 08/13/1996  | 06/17/1993   |
|                                | Sample Time   | 11:10       | 11:10       | 11:20       | 11:30       | 11:40       | 00:50       |              |
|                                | Sample Depth  | 6' - 8'     | 6' - 8'     | 8' - 10'    | 10' - 12'   | 12' - 14'   | 14' - 15'   |              |
|                                | Laboratory    | AEL         | LEA         | LEA         | LEA         | LEA         | LEA         | ENS          |
|                                | Lab. Number   | AEL96009232 | 96-3979-109 | 96-3980-110 | 96-3981-111 | 96-3982-112 | 96-3983-113 | 0291110001SA |
| Constituent                    | Units         |             |             |             |             |             |             |              |
| Phenanthrene                   | μ <b>g/kg</b> | <350        |             |             |             |             |             | <360         |
| Phenol                         | μ <b>g/kg</b> | <350        |             |             |             |             |             | <360         |
| Propane),2,2'-oxybis(2-chloro- | μ <b>g/kg</b> | ⊲350        |             |             |             |             |             | <360         |
| Pyrene                         | μg/kg         | <350        |             |             |             |             |             | <360         |
| Frichlorobenzene, 1, 2, 4-     | μg/kg         | ⊲350        |             |             |             |             |             | <360         |
| Trichlorophenol,2,4,5-         | μg/kg         |             |             |             |             |             |             | <1700        |
| Trichlorophenol,2,4,6-         | μg/kg         | <350        |             |             |             |             |             | ⊲60          |
| Acetone                        | μ <b>g/kg</b> | <26         |             |             |             |             |             | <11          |
| Acetonitrile                   | μg/kg         |             |             |             |             |             |             |              |
| Acrolein                       | μg/kg         | <13         |             |             |             |             |             |              |
| Acrylonitrile                  | μg/kg         | <13         |             |             |             |             |             |              |
| Allyl Chloride                 | μg/kg         |             |             |             |             |             |             |              |
| Benzene                        | μ <b>g/kg</b> | <5.1        |             |             |             |             |             | <5.4         |
| Benzene (screening)            | μg/kg         |             | <1          | <7          | <8          | <8 nc       | <9 nc       |              |
| Bromobenzene                   | μg/kg         | <5.1        |             |             |             |             |             |              |
| Bromoform                      | μg/kg         | <5.1        |             |             |             |             |             | <5.4         |
| Carbon Disulfide               | μg/kg         | <5.1        |             |             |             |             |             | <5.4         |
| Carbon Tetrachloride           | μg/kg         | <5.1        |             |             |             |             |             | <5.4         |
| Chlorobenzene                  | μg/kg         | <5.1        |             |             |             |             |             | <5.4         |
| Chlorodibromomethane           | μg/ <b>kg</b> | <5.1        |             |             |             |             |             | <5.4         |
| Chloroethane                   | μg/kg         | <5.1        |             |             |             |             |             | <11          |
| Chloroethyl Vinyl Ether,2-     | μg/kg         | <5.1        |             |             |             |             |             |              |
| Chloroform                     | μg/kg         | <5.1        |             |             |             |             |             | <5.4         |
| Chloroprene, beta-             | μg/kg         |             |             |             |             |             |             |              |
| Chlorotoluene,o-               | μg/kg         | <5.1        |             |             |             |             |             |              |
| Chlorotohuene,p-               | μg/kg         | <5.1        |             |             |             |             |             | <360         |
| Dibromomethane                 | μg/kg         | <5.1        |             |             |             |             |             |              |
| Dichlorobenzens, 1, 2-         | μg/kg         | <5.1        |             |             |             |             | <u> </u>    | <360         |

## Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 59 of 66

|                                |                |             |             |             |             |             |             | Page 59 of   |
|--------------------------------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|
|                                | Location ID    | NK-SB-46    | NK-SB-46    | NK-SB-46    | NK-SB-46    | NK-SB-46    | NK-SB-46    | NK-SS-14     |
|                                | Sample ID      | 1017144     | 1017144     | 1017145     | 1017146     | 1017147     | 1017148     | 01015061793  |
|                                | Sample Date    | 08/13/1996  | 08/13/1996  | 08/13/1996  | 08/13/1996  | 08/13/1996  | 08/13/1996  | 06/17/1993   |
|                                | Sample Time    | 11:10       | 11:10       | 11:20       | 11:30       | 11:40       | 00:50       |              |
|                                | Sample Depth   | 6' - 8'     | 6' - 8'     | 8' - 10'    | 10' - 12'   | 12' - 14'   | 14' - 15'   |              |
|                                | Laboratory     | AEL         | LEA         | LEA         | LEA         | LEA         | LEA         | ENS          |
|                                | Lab. Number    | AEL96009232 | 96-3979-109 | 96-3980-110 | 96-3981-111 | 96-3982-112 | 96-3983-113 | 0291110001SA |
| Constituent                    | Units          |             |             |             |             |             |             |              |
| Dichlorobenzene,1,3-           | μg/kg          | <5.1        |             |             |             |             |             | <360         |
| Dichlorobenzene,1,4-           | μ <b>g/kg</b>  | <5.1        |             |             |             |             |             | <360         |
| Dichlorobromomethane           | μ <b>g/k</b> g | <5.1        |             |             |             |             |             | <5.4         |
| Dichlorodifluoromethane        | μg/kg          | <5.1        |             |             |             |             |             |              |
| Dichloroethane, 1, 1-          | μg/kg          | <5.1        |             |             |             |             |             | <5.4         |
| Dichloroethane, 1,2-           | μ <b>g/k</b> g | <5.1        |             |             |             |             |             | <5.4         |
| Dichloroethylene,1,1-          | μg/kg          | <5.1        |             |             |             |             |             | <5.4         |
| Dichloroethylene,1,2-          | μg/kg          |             |             |             |             |             |             | <5.4         |
| Dichloroethylene,1,2-cis-      | μ <b>g/kg</b>  | <5.1        |             |             |             |             |             |              |
| Dichloroethylene,1,2-trans-    | μg/kg          | <5.1        |             |             |             |             |             |              |
| Dichloropropane, 1,2-          | μ <b>8</b> /kg | <5.1        |             |             |             |             |             | <5.4         |
| Dichloropropylene, 1,3-        | μ <b>g/k</b> g |             |             |             |             |             |             |              |
| Dichloropropylene, 1,3-cis-    | μg/kg          | <5.1        |             |             |             |             |             | <5.4         |
| Dichloropropylene, 1, 3-trans- | μg/kg          | <5.1        |             |             |             |             |             | <5.4         |
| Dioxane,1,4-                   | μ <b>g/kg</b>  |             |             |             |             |             |             |              |
| Ethyl Methacrylate             | μ <b>g/kg</b>  |             |             |             |             |             |             |              |
| Ethylbenzene                   | μg/kg          | <5.1        |             |             |             |             | 1           | <5.4         |
| Ethylbenzene (screening)       | μg/kg          |             | <16         | <16         | <17         | <18 nc      | <19 nc      |              |
| Ethylene Dibromide             | μg/kg          |             |             |             |             |             |             |              |
| Hexanone,2-                    | µg/kg          | <13         |             |             |             |             |             | <11          |
| odomethane                     | μg/kg          |             |             |             |             |             |             |              |
| isobutyl Alcohol               | µg/kg          |             |             |             |             |             |             |              |
| Methacrylonitrile              | μg/kg          |             |             |             |             |             |             |              |
| Methyl Bromide                 | μ <b>g/k</b> g | <5.1        |             |             |             |             |             | <11          |
| Methyl Chloride                | μg/kg          | <5.1        |             |             |             |             |             | <11          |
| Methyl Ethyl Ketone            | μg/kg          | <13         |             |             |             |             |             | <11          |
| Methyl Methacrylate            | μg/kg          |             |             |             |             |             |             |              |
| Methyl-2-pentanone,4-          | μg/kg          | <13         |             |             |             |             |             | <11          |

# Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 60 of 66

|                                       | Location ID   | NK-SB-46    | NK-SB-46    | NK-SB-46    | NK-SB-46    | NK-SB-46    | NK-SB-46    | NK-SS-14     |
|---------------------------------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|
|                                       | Sample ID     | 1017144     | 1017144     | 1017145     | 1017146     | 1017147     | 1017148     | 01015061793  |
|                                       | Sample Date   | 08/13/1996  | 08/13/1996  | 08/13/1996  | 08/13/1996  | 08/13/1996  | 08/13/1996  | 06/17/1993   |
| _                                     | Sample Time   | 11:10       | 11:10       | 11:20       | 11:30       | 11:40       | 00:50       |              |
|                                       | Sample Depth  | 6' - 8'     | 6' - 8'     | 8' - 10'    | 10' - 12'   | 12' - 14'   | 14' - 15'   |              |
|                                       | Laboratory    | AEL         | LEA         | LEA         | LEA         | LEA         | LEA         | ENS          |
|                                       | Lab. Number   | AEL96009232 | 96-3979-109 | 96-3980-110 | 96-3981-111 | 96-3982-112 | 96-3983-113 | 0291110001SA |
| Constituent                           | Units         |             |             |             |             |             |             |              |
| Methyl-tert-butyl Ether               | μg/kg         | <5.1        |             |             |             |             |             |              |
| Methylene Chloride                    | μg/kg         | <5.1        |             |             |             |             |             | <5.4         |
| Propionitrile                         | μg/kg         | <u> </u>    |             |             |             |             |             |              |
| Styrene                               | μg/kg         | <5.1        |             |             |             |             |             | <5.4         |
| Tetrachloroethane,1,1,1,2-            | μg/kg         | <5.1        |             |             |             |             |             |              |
| Tetrachloroethane, 1, 1, 2, 2-        | μg/kg         | <5.1        |             |             |             |             |             | <5.4         |
| Tetrachioroethylene                   | μg/kg         | <5.1        |             |             |             |             |             | <5.4         |
| Tetrachloroethylene (screening)       | μg/kg         |             | <20         | <20         | <21         | <23 nc      | <23 nc      |              |
| Toluene                               | μg/kg         | <5.1        |             |             |             |             |             | <5.4         |
| Toluene (screening)                   | μg/kg         |             | <11         | <11         | <12         | <13 nc      | <13 nc      |              |
| Trichloroethane, 1, 1, 1-             | μg/kg         | <5.1        |             |             |             |             |             | <5.4         |
| Trichloroethane, 1, 1, 1- (screening) | μg/kg         |             | <195        | <199        | <211        | <229 nc     | <233 nc     |              |
| Trichloroethane, 1, 1, 2-             | μg/kg         | <5.1        |             |             |             |             |             | <5.4         |
| Trichloroethylene                     | μg/kg         | <5.1        |             |             |             |             |             | <5.4         |
| Trichloroethylene (screening)         | μg/kg         |             | <19         | <20         | <21         | <23 nc      | <23 nc      |              |
| Trichloromonofluoromethane            | μg/kg         | <5.1        |             |             |             |             |             |              |
| Trichloropropane, 1, 2, 3-            | μg/kg         | <5.1        |             |             |             |             |             |              |
| Vinyl Acetate                         | μg/kg         | <5.1        |             |             |             |             |             | <11          |
| Vinyl Chloride                        | μg/kg         | <5.1        |             |             |             |             |             | <11          |
| Xylene,o- (screening)                 | μ <b>g/kg</b> |             |             |             |             |             |             |              |
| Xylenes (Total)                       | μg/kg         | <5.1        |             |             |             |             |             | <5.4         |
| Xylenes (Total) (screening)           | μg/kg         |             |             |             |             |             |             |              |
| Xylenes,m- & p- (screening)           | μg/kg         |             |             |             |             |             |             |              |
|                                       |               |             |             |             |             |             |             |              |
|                                       |               |             |             |             |             |             |             |              |
|                                       |               |             |             |             |             |             |             |              |
|                                       |               |             |             |             | 1           |             |             |              |
|                                       |               | <u> </u>    | 1           |             |             |             |             |              |

LΕΔ

### Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 61 of 66

|                                      |                |              |              |              |              |              | <br>Page 61 01 00 |
|--------------------------------------|----------------|--------------|--------------|--------------|--------------|--------------|-------------------|
|                                      | Location ID    | NK-TP-14B    | NK-TP-14E    | NK-TP-14N    | NK-TP-14S    | NK-TP-14W    |                   |
|                                      | Sample ID      | 1635143      | 1635141      | 1635139      | 1635140      | 1635142      |                   |
|                                      | Sample Date    | 06/09/1997   | 06/09/1997   | 06/09/1997   | 06/09/1997   | 06/09/1997   |                   |
|                                      | Sample Time    | 09:30        | 09:25        | 09:20        | 09:22        | 09:27        |                   |
|                                      | Sample Depth   |              |              |              |              |              |                   |
|                                      | Laboratory     | QUAN         | QUAN         | QUAN         | QUAN         | QUAN         |                   |
|                                      | Lab. Number    | A7F100149034 | A7F100149032 | A7F100149030 | A7F100149031 | A7F100149033 |                   |
| Constituent                          | Units          |              |              |              |              |              |                   |
| Date Metals Analysed                 | •              | 06/26/1997   | 06/26/1997   | 06/26/1997   | 06/26/1997   | 06/26/1997   |                   |
| Data Organics Analysed               |                | 06/21/1997   | 06/21/1997   | 06/20/1997   | 06/21/1997   | 06/21/1997   |                   |
| Date PCBs Analysed                   | •              |              |              |              |              |              |                   |
| Date Physical Analysed               | -              | 06/24/1997   | 06/24/1997   | 06/24/1997   | 06/24/1997   | 06/24/1997   |                   |
| Data Semi-volatile Organics Analysed | •              |              |              |              |              |              |                   |
| Arsenic                              | mg/kg          | <1.3 U       | <1.2 U       | <1.1 U       | <1.1 U       | <1.1 U       |                   |
| Barium                               | mg/kg          | <19.6 U      | <17.4 U      | 23.9         | <16.1 U      | <17.0 U      |                   |
| Beryllium                            | mg/kg          |              |              |              |              |              |                   |
| Cadmium                              | mg/kg          | <0.13 U      | <0.12 U      | <0.11 U      | <0.11 U      | <0.11 U      |                   |
| Chromium                             | mg/kg          | 7.9          | 6.9          | 9.8          | 6.0          | 6.3          |                   |
| Chromium (Total)                     | mg/kg          |              |              |              |              |              |                   |
| Copper                               | mg/kg          |              |              |              |              |              |                   |
| Lead                                 | mg/kg          | 6.1          | 3.5          | 3.1          | 3.3          | 3.3          |                   |
| Mercury                              | mg/kg          | <0.20 U      | <0.17 U      | <0.16 U      | <0.16 U      | <0.17 U      |                   |
| Nickel                               | mg/kg          | 6.7          | 7.2          | 9.0          | 5.2          | 6.6          |                   |
| Selenium                             | mg/kg          | <1.0 U       | <0.93 U      | <0.86 U      | <0.86 U      | <0.91 U      |                   |
| Silver                               | mg/kg          | <3.9 U       | <3.5 U       | <3.2 U       | <3.2 U       | <3.4 U       |                   |
| Zinc                                 | mg/kg          | <19.6 U      | 26.0         | 22.2         | 16.8         | 18.1         |                   |
| PCB 1016                             | μ <b>g/kg</b>  |              |              |              |              |              |                   |
| PCB 1221                             | μg/kg          |              |              |              |              |              |                   |
| PCB 1232                             | μ <b>g/kg</b>  |              |              |              |              |              |                   |
| PCB 1242                             | μ <b>g/kg</b>  |              |              |              |              |              |                   |
| PCB 1248                             | μg/kg          |              |              |              |              |              |                   |
| PCB 1254                             | μg/kg          |              |              |              |              |              |                   |
| PCB 1260                             | µg/kg          |              |              |              |              |              |                   |
| Dibromo-3-chloropropane, 1,2-        | μ <b>g/k</b> g | <6.5 U       | <5.8 U       | <5.4 U       | <5.4 U       | <5.7 U       |                   |
| Total Petroleum Hydrocarbons         | mg/kg          | <65 U        | <58 U        | <54 U        | <54 U        | <57 U        |                   |
| Acenaphthene                         | μg/kg          |              |              |              |              |              |                   |
|                                      |                | T            | 1            | T            | <u> </u>     | 1            |                   |



### Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 62 of 66

|                                  |               |              |              |              |              |              |              | Fage 62 01 00 |
|----------------------------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|
|                                  | Location ID   | NK-TP-14B    | NK-TP-14E    | NK-TP-14N    | NK-TP-14S    | NK-TP-14W    |              |               |
|                                  | Sample ID     | 1635143      | 1635141      | 1635139      | 1635140      | 1635142      |              |               |
|                                  | Sample Date   | 06/09/1997   | 06/09/1997   | 06/09/1997   | 06/09/1997   | 06/09/1997   |              |               |
|                                  | Sample Time   | 09:30        | 09:25        | 09:20        | 09:22        | 09:27        |              |               |
|                                  | Sample Depth  |              |              |              |              |              |              |               |
|                                  | Laboratory    | QUAN         | QUAN         | QUAN         | QUAN         | QUAN         |              |               |
|                                  | Lab. Number   | A7F100149034 | A7F100149032 | A7F100149030 | A7F100149031 | A7F100149033 |              |               |
| Constituent                      | Units         |              |              |              |              |              |              |               |
| Acenaphthylene                   | μg/kg         |              |              |              |              |              |              |               |
| Anthracene                       | μg/kg         |              |              |              |              |              |              |               |
| Benzidine                        | μg/kg         |              |              |              |              |              |              |               |
| Benzo[a]anthracene               | μg/kg         |              |              |              |              |              |              |               |
| Benzo[a]pyrene                   | μg/kg         |              |              |              |              |              |              |               |
| Benzo(b)finoranthene             | μg/kg         |              |              |              |              |              |              |               |
| Benzo[ghi]perylene               | μg/kg         |              |              |              |              |              |              |               |
| Benzo[k]fluoranthene             | μ <b>g/kg</b> |              |              |              |              |              |              |               |
| Bis(2-chloroethoxy)methane       | μg/kg         |              |              |              |              |              |              |               |
| Bis(2-chloroethyl)ether          | μg/kg         |              |              |              |              |              |              |               |
| Bis(2-sthylhexyl)phthalate       | μg/kg         |              |              |              |              |              |              |               |
| Bromophenyl Phenyl Ether,4-      | μg/kg         |              |              |              |              |              |              |               |
| Butyl Benzyl Phthalate           | μg/kg         |              |              |              |              |              |              |               |
| Carbazole                        | μg/kg         |              |              |              |              |              |              |               |
| Chloroaniline,4-                 | μg/kg         |              |              |              |              |              |              |               |
| Chloronaphthalene,2-             | μg/kg         |              |              |              |              |              |              |               |
| Chlorophenol,2-                  | μg/kg         |              |              |              |              |              |              |               |
| Chlorophenyl Phenyl Ether,4-     | μg/kg         |              |              |              |              |              |              |               |
| Chrysene                         | μ <b>g/kg</b> |              |              |              |              |              |              |               |
| Cresol,2-                        | μg/kg         |              |              |              |              |              |              |               |
| Cresol,4-                        | μg/ <b>kg</b> |              |              |              |              |              |              |               |
| Di-n-butyl Phthalate             | μg/kg         |              |              |              |              |              |              |               |
| Di-n-octyl Phthalate             | μg/kg         |              |              |              |              |              |              |               |
| Dibenzo[a,h]anthracene           | μg/kg         |              |              |              |              |              |              |               |
| Dibenzofuran                     | μg/kg         |              |              |              |              |              |              |               |
| Dichloro-2-butylene, 1, 4-trans- | μg/kg         | <6.5 U       | <5.8 U       | <5.4 U       | <5.4 U       | <5.7 U       |              |               |
| Dichlorobenzidine,3,3'-          | μg/kg         |              |              |              |              |              |              |               |
| Dichlorophenol,2,4-              | μg/kg         |              |              |              | <u> </u>     |              | <del> </del> |               |
| V                                |               |              |              |              |              |              |              | t             |



# Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 63 of 66

|                           |               | _            |              |              |              |                                                  |                                                  | Page 63 of 66 |
|---------------------------|---------------|--------------|--------------|--------------|--------------|--------------------------------------------------|--------------------------------------------------|---------------|
|                           | Location ID   | NK-TP-14B    | NK-TP-14E    | NK-TP-14N    | NK-TP-14S    | NK-TP-14W                                        |                                                  |               |
|                           | Sample ID     | 1635143      | 1635141      | 1635139      | 1635140      | 1635142                                          |                                                  |               |
|                           | Sample Date   | 06/09/1997   | 06/09/1997   | 06/09/1997   | 06/09/1997   | 06/09/1997                                       |                                                  |               |
|                           | Sample Time   | 09:30        | 09:25        | 09:20        | 09:22        | 09:27                                            |                                                  |               |
| -                         | Sample Depth  |              |              |              |              |                                                  |                                                  |               |
|                           | Laboratory    | QUAN         | QUAN         | QUAN         | QUAN         | QUAN                                             |                                                  |               |
|                           | Lab. Number   | A7F100149034 | A7F100149032 | A7F100149030 | A7F100149031 | A7F100149033                                     |                                                  |               |
| Constituent               | Units         |              |              |              |              |                                                  |                                                  | <u> </u>      |
| Diethyl Phthalate         | μg/kg         |              |              |              |              |                                                  |                                                  |               |
| Dimethyl Phthalate        | μg/kg         |              |              |              |              |                                                  |                                                  |               |
| Dimethylphenol,2,4-       | μg/ <b>kg</b> |              |              |              |              |                                                  | Ī                                                |               |
| Dinitro-o-cresol,4,6-     | μg/kg         |              |              |              |              |                                                  |                                                  |               |
| Dinitrophenol,2,4-        | μg/kg         |              |              |              |              |                                                  |                                                  |               |
| Dinitrotoluene,2,4-       | μg/kg         |              |              |              |              |                                                  |                                                  |               |
| Dinitrotoluene,2,6-       | μg/kg         |              |              |              |              |                                                  |                                                  |               |
| Diphenylhydrazine,1,2-    | μg/kg         |              |              |              |              |                                                  |                                                  |               |
| Fluoranthene              | μ <b>g/kg</b> |              |              |              |              |                                                  |                                                  |               |
| Fluorene                  | μ <b>g/kg</b> |              |              |              |              |                                                  |                                                  |               |
| Hexachiorobenzene         | μg/kg         |              |              |              |              |                                                  |                                                  |               |
| Hexachlorobutadiene       | μg/kg         |              |              |              |              |                                                  |                                                  |               |
| Hexachlorocyclopentadiene | μ <b>g/kg</b> |              |              |              |              |                                                  |                                                  |               |
| Hexachloroethane          | μ <b>g/kg</b> |              |              |              |              |                                                  |                                                  |               |
| Indeno(1,2,3-cd)pyrene    | μg/kg         |              |              |              |              |                                                  |                                                  |               |
| Isophorone                | μg/kg         |              |              |              |              |                                                  |                                                  |               |
| Methylnaphthalene,2-      | μg/kg         |              |              |              |              |                                                  |                                                  |               |
| N-nitrosodi-n-propylamine | μg/kg         |              |              |              |              |                                                  |                                                  |               |
| N-nitrosodimethylamine    | μg/kg         |              |              |              |              |                                                  |                                                  |               |
| N-nitrosodiphenylamine    | μg/kg         |              |              |              |              |                                                  |                                                  |               |
| Naphthalene               | μg/kg         |              |              |              |              |                                                  |                                                  |               |
| Nitroaniline,2-           | μg/kg         |              |              |              |              |                                                  |                                                  |               |
| Nitroaniline,3-           | μg/kg         |              |              |              |              |                                                  |                                                  |               |
| Nitroaniline,4-           | μg/kg         |              |              |              |              |                                                  |                                                  |               |
| Nitrobenzene              | μg/kg         |              |              |              |              |                                                  |                                                  |               |
| Nitrophenol,2-            | μg/kg         |              |              |              |              |                                                  |                                                  |               |
| Nitrophenol,4-            | μg/kg         |              |              |              |              |                                                  |                                                  |               |
| Pentachlorophenol         | μg/kg         |              |              | T            |              |                                                  |                                                  |               |
|                           |               | <u> </u>     |              | 1            | 1            | <del>                                     </del> | <del>                                     </del> |               |

# Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 64 of 66

|                | Tarre man : :=                                                                                                   | 13 TT 000 1 1-                                                                                                               | 1                                                                                                   | 1 x = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 =                                                                                                               | 1 x x x 2 x x x x x x x x x x x x x x x           | T                                                                                                                                                                                                                                           | Page 64 of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |                                                                                                                  |                                                                                                                              |                                                                                                     |                                                                                                                                                         |                                                   | <del> </del>                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                |                                                                                                                  |                                                                                                                              |                                                                                                     |                                                                                                                                                         | <u> </u>                                          | <b></b>                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | 06/09/1997                                                                                                       |                                                                                                                              |                                                                                                     |                                                                                                                                                         |                                                   |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sample Time    | 09:30                                                                                                            | 09:25                                                                                                                        | 09:20                                                                                               | 09:22                                                                                                                                                   | 09:27                                             |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sample Depth   |                                                                                                                  |                                                                                                                              |                                                                                                     |                                                                                                                                                         |                                                   |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Laboratory     | QUAN                                                                                                             | QUAN                                                                                                                         | QUAN                                                                                                | QUAN                                                                                                                                                    | QUAN                                              |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Lab. Number    | A7F100149034                                                                                                     | A7F100149032                                                                                                                 | A7F100149030                                                                                        | A7F100149031                                                                                                                                            | A7F100149033                                      |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Units          |                                                                                                                  |                                                                                                                              |                                                                                                     |                                                                                                                                                         |                                                   |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| µg/kg          |                                                                                                                  |                                                                                                                              |                                                                                                     |                                                                                                                                                         |                                                   |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| μg/kg          |                                                                                                                  |                                                                                                                              |                                                                                                     |                                                                                                                                                         |                                                   |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| μg/kg          |                                                                                                                  |                                                                                                                              |                                                                                                     |                                                                                                                                                         |                                                   |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| μg/kg          |                                                                                                                  |                                                                                                                              |                                                                                                     |                                                                                                                                                         |                                                   |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| μg/kg          |                                                                                                                  |                                                                                                                              |                                                                                                     |                                                                                                                                                         |                                                   |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| μg/kg          |                                                                                                                  |                                                                                                                              |                                                                                                     |                                                                                                                                                         |                                                   |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| μg/kg          |                                                                                                                  |                                                                                                                              |                                                                                                     |                                                                                                                                                         |                                                   |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| μ <b>g/k</b> g | <130 U                                                                                                           | <120 U                                                                                                                       | <110 U                                                                                              | <110 U                                                                                                                                                  | <110 U                                            |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| μ <b>g/k</b> g | <65 U                                                                                                            | <58 U                                                                                                                        | <54 U                                                                                               | <54 U                                                                                                                                                   | <57 U                                             |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| μg/kg          | <65 U                                                                                                            | <58 U                                                                                                                        | <54 U                                                                                               | <54 U                                                                                                                                                   | <57 U                                             |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| μg/kg          | <130 U                                                                                                           | <120 U                                                                                                                       | <110 U                                                                                              | <110 U                                                                                                                                                  | <110 U                                            |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| μg/kg          | <130 U                                                                                                           | <120 U                                                                                                                       | <110 U                                                                                              | <110 U                                                                                                                                                  | <110 U                                            |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | <6.5 U                                                                                                           | <5.8 U                                                                                                                       | <5.4 U                                                                                              | <5.4 U                                                                                                                                                  | <5.7 U                                            |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                |                                                                                                                  |                                                                                                                              |                                                                                                     |                                                                                                                                                         |                                                   |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                |                                                                                                                  |                                                                                                                              |                                                                                                     |                                                                                                                                                         |                                                   | 1                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | <6.5 U                                                                                                           | <5.8 U                                                                                                                       | <5.4 U                                                                                              | <5.4 U                                                                                                                                                  | <5.7 U                                            | <u> </u>                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                |                                                                                                                  |                                                                                                                              |                                                                                                     | <del></del>                                                                                                                                             | <del></del>                                       | <del> </del>                                                                                                                                                                                                                                | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                |                                                                                                                  |                                                                                                                              |                                                                                                     |                                                                                                                                                         |                                                   | † · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                     | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                | <6.5 U                                                                                                           | <5.8 U                                                                                                                       |                                                                                                     | <5.4 U                                                                                                                                                  |                                                   | <del>                                     </del>                                                                                                                                                                                            | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                |                                                                                                                  |                                                                                                                              |                                                                                                     | <del></del>                                                                                                                                             | <del></del>                                       |                                                                                                                                                                                                                                             | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                | <del></del>                                                                                                      | <del></del>                                                                                                                  | <del></del>                                                                                         | <del></del>                                                                                                                                             | <del></del>                                       | <del> </del>                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                |                                                                                                                  |                                                                                                                              |                                                                                                     | <del> </del>                                                                                                                                            |                                                   |                                                                                                                                                                                                                                             | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                | <6.5 U                                                                                                           | <5.8 U                                                                                                                       | <5.4 U                                                                                              | <5.4 U                                                                                                                                                  | <5.7 U                                            |                                                                                                                                                                                                                                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                                  |                                                                                                                              |                                                                                                     | <del></del>                                                                                                                                             |                                                   | <u> </u>                                                                                                                                                                                                                                    | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                | <del>                                     </del>                                                                 |                                                                                                                              | 1                                                                                                   | 1                                                                                                                                                       | <del> </del>                                      | <del> </del>                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                |                                                                                                                  |                                                                                                                              |                                                                                                     |                                                                                                                                                         | <del> </del>                                      |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | <6.5 U                                                                                                           | <5.8 U                                                                                                                       | <5.4 U                                                                                              | <5.4 U                                                                                                                                                  | <5.7 U                                            | <del> </del>                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | <del> </del>                                                                                                     |                                                                                                                              | 1                                                                                                   | 1 2.40                                                                                                                                                  |                                                   | <del> </del>                                                                                                                                                                                                                                | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                | Laboratory Lab. Number Units  µg/kg   Sample ID 1635143  Sample Date 06/09/1997  Sample Time 09:30  Sample Depth  Laboratory QUAN  Lab. Number A7F100149034  Units | Sample ID 1635143 1635141  Sample Date 06/09/1997 06/09/1997  Sample Time 09:30 09:25  Sample Depth | Sample ID   1635143   1635141   1635139     Sample Date   06/09/1997   06/09/1997   06/09/1997     Sample Time   09:30   09:25   09:20     Sample Depth | Sample ID   1635143   1635141   1635139   1635140 | Sample ID   1635143   1635141   1635139   1635140   1635142     Sample Date   06/09/1997   06/09/1997   06/09/1997   06/09/1997   06/09/1997   06/09/1997   06/09/1997   06/09/1997   06/09/1997   06/09/1997   06/09/1997     Sample Dopth | Sample ID 1635143 1635141 1635139 1635140 1635142  Sample Date 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 06/09/1997 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/22 09/2 |

# Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 65 of 66

|                                |               |              |              |              |              |              |             | Page 65 of 66 |
|--------------------------------|---------------|--------------|--------------|--------------|--------------|--------------|-------------|---------------|
|                                | Location ID   | NK-TP-14B    | NK-TP-14E    | NK-TP-14N    | NK-TP-14S    | NK-TP-14W    |             |               |
|                                | Sample ID     | 1635143      | 1635141      | 1635139      | 1635140      | 1635142      |             |               |
|                                | Sample Date   | 06/09/1997   | 06/09/1997   | 06/09/1997   | 06/09/1997   | 06/09/1997   |             |               |
|                                | Sample Time   | 09:30        | 09:25        | 09:20        | 09:22        | 09:27        |             |               |
|                                | Sample Depth  |              |              |              |              |              |             | <u> </u>      |
|                                | Laboratory    | QUAN         | QUAN         | QUAN         | QUAN         | QUAN         |             |               |
|                                | Lab. Number   | A7F100149034 | A7F100149032 | A7F100149030 | A7F100149031 | A7F100149033 |             |               |
| Constituent                    | Units         |              |              |              |              |              |             |               |
| Dichlorobenzene,1,3-           | μg/kg         |              |              |              |              |              |             |               |
| Dichlorobenzene, 1,4-          | μ <b>g/kg</b> |              |              |              |              |              |             |               |
| Dichlorobromomethane           | μg/kg         | <6.5 U       | <5.8 U       | <5.4 U       | <5.4 Ü       | <5.7 U       |             |               |
| Dichlorodifluoromethane        | μg/kg         | <6.5 U       | <5.8 U       | <5.4 U       | <5.4 U       | <5.7 U       |             |               |
| Dichlorosthane,1,1-            | μ <b>g/kg</b> | <6.5 U       | <5.8 U       | <5.4 U       | <5.4 U       | <5.7 U       |             |               |
| Dichlorosthane,1,2-            | μg/kg         | <6.5 U       | <5.8 U       | <5.4 U       | <5.4 U       | <5.7 U       |             |               |
| Dichloroethylene,1,1-          | μg/kg         | <6.5 U       | <5.8 U       | <5.4 U       | <5.4 U       | <5.7 U       |             |               |
| Dichloroethylene,1,2-          | μg/kg         |              |              |              |              |              |             |               |
| Dichloroethylene, 1,2-cis-     | μg/kg         | <6.5 U       | <5.8 U       | <5.4 U       | <5.4 U       | <5.7 U       |             |               |
| Dichloroethylene, 1,2-trans-   | μg/kg         | <6.5 U       | <5.8 U       | <5.4 U       | <5.4 U       | <5.7 U       |             |               |
| Dichloropropane, 1,2-          | μg/kg         | <6.5 U       | <5.8 U       | <5.4 U       | <5.4 U       | <5.7 U       |             |               |
| Dichloropropylene, 1,3-        | μg/kg         | <6.5 U       | <5.8 U       | <5.4 U       | <5.4 U       | <5.7 U       |             |               |
| Dichloropropylene, 1, 3-cis-   | μg/kg         |              |              |              |              |              |             |               |
| Dichloropropylene, 1, 3-trans- | μ <b>g/kg</b> |              |              |              |              |              |             |               |
| Dioxane,1,4-                   | μg/kg         | <200 U       | <170 U       | <160 U       | <160 U       | <170 U       |             |               |
| Ethyl Methacrylate             | μg/kg         | <6.5 U       | <5.8 U       | <5.4 U       | <5.4 U       | <5.7 U       |             |               |
| Ethylbenzene                   | μ <b>g/kg</b> | <6.5 U       | <5.8 U       | <5.4 U       | <5.4 U       | <5.7 U       |             |               |
| Ethylbenzene (screening)       | μg/kg         |              |              |              |              |              |             |               |
| Ethylene Dibromide             | μg/kg         | <6.5 U       | <5.8 U       | <5.4 U       | <5.4 U       | <5.7 U       |             |               |
| Hexanone,2-                    | μg/kg         | <65 U        | <58 U        | <54 U        | <54 U        | <57 U        |             |               |
| Iodomethane                    | μ <b>g/kg</b> | <6.5 U       | <5.8 U       | <5.4 U       | <5.4 U       | <5.7 U       |             |               |
| Isobutyl Alcohol               | μ <b>g/kg</b> | <65 U        | <58 U        | <54 U        | <54 U        | <57 U        |             |               |
| Methacrylonitrile              | μg/kg         | <6.5 U       | <5.8 U       | <5.4 U       | <5.4 U       | <5.7 U       |             |               |
| Methyl Bromide                 | μ <b>g/kg</b> | <13 U        | <12 U        | <11 U        | <11 U        | <11 U        |             |               |
| Methyl Chloride                | μg/kg         | <13 U        | <12 U        | <11 U        | <11 U        | <11 U        |             |               |
| Methyl Ethyl Ketone            | μg/kg         | <130 U       | <120 U       | <110 U       | <110 U       | <110 U       |             |               |
| Methyl Methacrylate            | μg/kg         | <6.5 U       | <5.8 U       | <5.4 U       | <5.4 U       | <5.7 U       |             |               |
| Methyl-2-pentanone,4-          | μg/kg         | <13 U        | <12 U        | <11 U        | <11 U        | <11 U        |             |               |
|                                |               | 1            | <del> </del> | <del> </del> | <del> </del> | <del> </del> | <del></del> | <del> </del>  |

# Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-314 Septic System Area

Page 66 of 66

|                                         |                |              |              |              |              |                                                  |   | Page 66 of 66 |
|-----------------------------------------|----------------|--------------|--------------|--------------|--------------|--------------------------------------------------|---|---------------|
|                                         | Location ID    | NK-TP-14B    | NK-TP-14E    | NK-TP-14N    | NK-TP-14S    | NK-TP-14W                                        |   |               |
|                                         | Sample ID      | 1635143      | 1635141      | 1635139      | 1635140      | 1635142                                          |   |               |
|                                         | Sample Date    | 06/09/1997   | 06/09/1997   | 06/09/1997   | 06/09/1997   | 06/09/1997                                       |   |               |
|                                         | Sample Time    | 09:30        | 09:25        | 09:20        | 09:22        | 09:27                                            |   |               |
|                                         | Sample Depth   |              |              |              |              |                                                  |   |               |
|                                         | Laboratory     | QUAN         | QUAN         | QUAN         | QUAN         | QUAN                                             |   |               |
|                                         | Lab. Number    | A7F100149034 | A7F100149032 | A7F100149030 | A7F100149031 | A7F100149033                                     |   |               |
| Constituent                             | Units          |              |              |              |              |                                                  |   |               |
| Methyl-tert-butyl Ether                 | μg/kg          | <6.5 U       | <5.8 U       | <5.4 U       | <5.4 U       | <5.7 U                                           |   |               |
| Methylene Chloride                      | μg/kg          | <6.5 U       | <5.8 U       | <5.4 U       | <5.4 U       | <5.7 U                                           |   |               |
| Propionitrile                           | μg/kg          | <26 U        | <23 U        | <22 U        | <21 U        | <23 U                                            |   |               |
| Styrene                                 | μg/kg          | <6.5 U       | <5.8 U       | <5.4 U       | <5.4 U       | <5.7 U                                           |   |               |
| Tetrachloroethane, 1, 1, 1, 2-          | μ <b>g/kg</b>  | <6.5 U       | <5.8 U       | <5.4 U       | <5.4 U       | <5.7 U                                           |   |               |
| Tetrachloroethane, 1, 1, 2, 2-          | µg/kg          | <6.5 U       | <5.8 U       | <5.4 U       | <5.4 U       | <5.7 U                                           |   |               |
| Tetrachloroethylene                     | μ <b>g/kg</b>  | <6.5 U       | <5.8 U       | <5.4 U       | <5.4 U       | <5.7 U                                           |   |               |
| Tetrachloroethylene (screening)         | μg/kg          |              |              |              |              |                                                  |   |               |
| Toluene                                 | μg/kg          | <6.5 U       | <5.8 U       | <5.4 U       | <5.4 U       | <5.7 U                                           |   |               |
| Toluene (screening)                     | μg/kg          |              |              |              |              |                                                  |   |               |
| Trichloroethane, 1, 1, 1-               | μg/kg          | <6.5 U       | <5.8 U       | <5.4 U       | <5.4 U       | <5.7 U                                           |   |               |
| Trichloroethane, 1, 1, 1- (screening)   | μg/kg          |              |              |              |              |                                                  |   |               |
| Trichloroethane, 1, 1, 2-               | μ <b>g/k</b> g | <6.5 U       | <5.8 U       | <5.4 U       | <5.4 U       | <5.7 U                                           |   |               |
| Trichloroethylene                       | μg/kg          | <6.5 U       | <5.8 U       | <5.4 U       | <5.4 U       | <5.7 U                                           |   |               |
| Trichloroethylene (screening)           | μg/kg          |              |              |              |              |                                                  |   |               |
| Trichloromonofluoromethane              | μg/kg          | <6.5 U       | <5.8 U       | <5.4 U       | <5.4 U       | <5.7 U                                           |   |               |
| Trichloropropane, 1, 2, 3-              | μg/kg          | <6.5 U       | <5.8 U       | <5.4 U       | <5.4 U       | <5.7 U                                           |   |               |
| Vinyl Acetate                           | μg/kg          | <6.5 U       | <5.8 U       | <5.4 U       | <5.4 U       | <5.7 U                                           |   |               |
| Vinyl Chloride                          | μg/kg          | <13 U        | <12 U        | <11 U        | <11 U        | <11 U                                            |   |               |
| Xylene,o- (screening)                   | μg/kg          |              |              |              |              |                                                  |   |               |
| Xylenes (Total)                         | μg/kg          | <6.5 U       | <5.8 U       | <5.4 U       | <5.4 U       | <5.7 U                                           |   |               |
| Xylenes (Total) (screening)             | μg/kg          |              |              |              |              |                                                  |   |               |
| Xylenes,m- & p- (screening)             | μg/kg          |              |              |              |              |                                                  |   |               |
|                                         |                |              |              |              |              |                                                  |   |               |
|                                         |                |              |              |              |              |                                                  |   |               |
|                                         |                |              |              |              |              |                                                  |   | 1             |
|                                         |                |              |              |              |              |                                                  | 1 | 1             |
| *************************************** |                | 1            |              |              | <del> </del> | <del>                                     </del> | 1 | †             |
|                                         |                |              |              |              |              | 1                                                |   | <u> </u>      |

### Table 4 DRAFT SUMMARY OF SAMPLING AND ANALYTICAL INFORMATION (DETECTS) - GROUNDWATER P&W East Hartford: X-314 Septic System Area

Page 1 of 1

|                      |              |              |   | <br> |   | Page I of I |
|----------------------|--------------|--------------|---|------|---|-------------|
|                      | Location ID  | NK-SB-46     | L |      |   |             |
|                      | Sample ID    | 1017205      |   |      |   |             |
|                      | Sample Date  | 08/13/1996   |   |      |   |             |
|                      | Sample Time  | 11:50        |   |      |   |             |
|                      | Sample Depth | 9.5' - 10.5' |   |      |   |             |
|                      | Laboratory   | AEL          |   |      |   |             |
|                      | Lab. Number  | AEL96008990  |   |      |   |             |
| Constituent          | Units        |              |   |      |   |             |
| Date Metals Analysed | -            | 08/14/1996   |   |      |   |             |
| Barium               |              | 0.028        |   |      |   |             |
| Nickel               | mg/L         | 0.079        |   |      |   |             |
| Zinc                 | mg/L         | 0.026        |   |      |   |             |
|                      |              |              |   |      |   |             |
|                      |              |              |   |      |   |             |
|                      |              |              |   |      |   |             |
|                      |              |              |   |      |   |             |
|                      |              |              |   |      |   |             |
|                      |              |              |   |      |   |             |
|                      |              |              |   |      |   |             |
|                      |              |              |   |      |   |             |
|                      |              |              |   |      |   |             |
|                      |              |              |   |      |   |             |
|                      |              |              |   |      |   |             |
|                      |              |              |   |      |   |             |
|                      |              |              |   |      |   |             |
|                      |              |              |   |      |   |             |
|                      |              |              |   |      |   |             |
|                      |              |              |   |      |   |             |
|                      |              |              |   |      |   |             |
|                      |              |              |   |      |   |             |
|                      |              |              |   |      |   |             |
|                      |              |              |   |      |   |             |
|                      |              |              |   |      |   |             |
|                      |              |              |   |      |   |             |
|                      |              |              |   |      | · |             |
|                      |              |              |   |      |   |             |
|                      |              |              |   | <br> | T |             |

Notes: 1. Only Detects Shown

2. Printed on 09/24/98

LΕΔ

#### Table 5 SUMMARY OF ANALYTICAL RESULTS - GROUNDWATER P&W East Hartford: X-314 Septic System Area

|                              |               |              |              |  | <br>     | Page 1 of 3 |
|------------------------------|---------------|--------------|--------------|--|----------|-------------|
|                              | Location ID   | NK-SB-46     | NK-SB-46     |  |          |             |
|                              | Sample ID     | 1017205      | 1017205      |  |          |             |
|                              | Sample Date   | 08/13/1996   | 08/13/1996   |  |          |             |
|                              | Sample Time   | 11:50        | 11:50        |  |          |             |
|                              | Sample Depth  | 9.5' - 10.5' | 9.5' - 10.5' |  |          |             |
|                              | Laboratory    | AEL          | LEA          |  |          |             |
|                              | Lab. Number   | AEL96008990  | 96-3995-125  |  |          |             |
| Constituent                  | Units         |              |              |  |          |             |
| Date Metals Analysed         | •             | 08/14/1996   |              |  |          |             |
| Date Organics Analysed       | •             | 08/26/1996   | 08/16/1996   |  |          |             |
| Date Physical Analysed       | •             | 08/14/1996   |              |  |          |             |
| Arsenic                      | mg/L          | <0.004       |              |  |          |             |
| Barium                       | mg/L          | 0.028        |              |  |          |             |
| Cadmium                      | mg/L          | <0.0010      |              |  |          |             |
| Chromium                     | mg/L          | <0.010       |              |  |          |             |
| Lead                         | mg/L          | <0.0050      |              |  |          |             |
| Mercury                      | mg/L          | <0.0004      |              |  |          |             |
| Nickel                       | mg/L          | 0.079        |              |  |          |             |
| Selenium                     | mg/L          | <0.010       |              |  |          |             |
| Silver                       | mg/L          | <0.010       |              |  |          |             |
| Zinc                         | mg/L          | 0.026        |              |  |          |             |
| Total Petroleum Hydrocarbons | mg/L          | <0.5         |              |  |          |             |
| Acetone                      | μg/L          | <20          |              |  |          |             |
| Acrolein                     | μg/L          | <10          |              |  |          |             |
| Acrylonitrile                | μg/L          | <0.66 **     |              |  |          |             |
| Benzene                      | μ <b>g</b> /L | <1.0         |              |  |          |             |
| Benzene (screening)          | μg/l          |              | <1           |  |          |             |
| Bromobenzene                 | μg/L          | <4.0         |              |  |          |             |
| Bromoform                    | μg/L          | <4.0         |              |  |          |             |
| Carbon Disulfide             | μg/L          | <4.0         |              |  |          |             |
| Carbon Tetrachloride         | μ <b>g/</b> L | <4.0         |              |  |          |             |
| Chlorobenzene                | μg/L          | <4.0         |              |  |          |             |
| Chlorodibromomethane         | μ <b>g/</b> L | <0.31 **     |              |  |          |             |
| Chloroethane                 | μg/L          | <4.0         |              |  |          |             |
| Chloroethyl Vinyl Ether,2-   | μg/L          | <4.0         |              |  |          |             |
| Chloroform                   | μg/L          | <4.0         |              |  |          |             |
| lotes:   Printed on 09/24/98 |               |              |              |  | <u> </u> |             |



### Table 5 SUMMARY OF ANALYTICAL RESULTS - GROUNDWATER P&W East Hartford: X-314 Septic System Area

DRAFT

Page 2 of 3

|                                |               |              |              | <br> |  | Page 2 of 3 |
|--------------------------------|---------------|--------------|--------------|------|--|-------------|
|                                | Location ID   | NK-SB-46     | NK-SB-46     |      |  |             |
|                                | Sample ID     | 1017205      | 1017205      |      |  |             |
|                                | Sample Date   | 08/13/1996   | 08/13/1996   |      |  |             |
|                                | Sample Time   | 11:50        | 11:50        |      |  |             |
|                                | Sample Depth  | 9.5' - 10.5' | 9.5' - 10.5' |      |  |             |
|                                | Laboratory    | AEL          | LEA          |      |  |             |
|                                | Lab. Number   | AEL96008990  | 96-3995-125  |      |  |             |
| Constituent                    | Units         |              |              |      |  |             |
| Chlorotoluene,o-               | μg/L          | <4.0         |              |      |  |             |
| Chlorotoluene,p-               | μ <b>g/</b> L | <4.0         |              |      |  |             |
| Dibromomethane                 | μ <b>g/</b> L | <4.0         |              |      |  |             |
| Dichlorobenzene, 1,2-          | μ <b>g/</b> L | <4.0         |              |      |  |             |
| Dichlorobenzene, 1,3-          | μg/L          | <4.0         |              |      |  |             |
| Dichlorobenzene, 1,4-          | μg/L          | <4.0         |              |      |  |             |
| Dichlorobromomethane           | μg/L          | <4.0         |              |      |  |             |
| Dichlorodifluoromethane        | μ <b>g/</b> L | <4.0         |              |      |  |             |
| Dichlorosthane,1,1-            | μg/L          | <4.0         |              |      |  |             |
| Dichloroethane,1,2-            | μg/L          | <1.0         |              |      |  |             |
| Dichlorosthylene, 1, 1-        | μ <b>g/</b> L | <1.4         |              |      |  |             |
| Dichloroethylene, 1,2-cis-     | μ <b>g/</b> L | <4.0         |              |      |  |             |
| Dichloroethylene, 1,2-trans-   | μg/L          | <4.0         |              |      |  |             |
| Dichloropropane, 1,2-          | μg/L          | <4.0         |              |      |  |             |
| Dichloropropylene, 1,3-cis-    | μg/L          | <0.22 **     |              |      |  |             |
| Dichloropropylene, 1, 3-trans- | μg/L          | <0.82        |              |      |  |             |
| Ethylbenzene                   | μg/L          | <4.0         |              |      |  |             |
| Ethylbenzene (screening)       | μ <b>g/</b> l |              | <3           |      |  |             |
| Hexanone,2-                    | μg/L          | <10          |              |      |  |             |
| Methyl Bromide                 | μg/L          | <4.0         |              |      |  |             |
| Methyl Chloride                | μ <b>g/</b> L | <4.0         |              |      |  |             |
| Methyl Ethyl Ketone            | μ <b>g/L</b>  | <10          |              |      |  |             |
| Methyl-2-pentanone,4-          | μg/L          | <10          |              |      |  |             |
| Methyl-tert-butyl Ether        | μ <b>g</b> /L | <4.0         |              |      |  |             |
| Methylene Chloride             | μg/L          | <4.0         |              |      |  |             |
| Styrene                        | μ <b>g</b> /L | <4.0         |              |      |  |             |
| Tetrachloroethane, 1, 1, 1, 2- | μ <b>g</b> /L | <1.0         |              |      |  |             |
| Tetrachlorosthane, 1, 1, 2, 2- | μ <b>g/</b> L | <0.30 **     |              |      |  |             |
|                                |               | 1            |              | 1    |  | <u> </u>    |

# Table 5 SUMMARY OF ANALYTICAL RESULTS - GROUNDWATER P&W East Hartford: X-314 Septic System Area

|                                        |               |              |              |              |          |             |              | Page 3 of    |
|----------------------------------------|---------------|--------------|--------------|--------------|----------|-------------|--------------|--------------|
|                                        | Location ID   | NK-SB-46     | NK-SB-46     |              |          |             |              |              |
|                                        | Sample ID     | 1017205      | 1017205      |              |          |             |              |              |
|                                        | Sample Date   | 08/13/1996   | 08/13/1996   |              |          |             |              |              |
|                                        | Sample Time   | 11:50        | 11:50        |              |          |             |              |              |
|                                        | Sample Depth  | 9,5' - 10.5' | 9.5' - 10.5' |              |          |             |              |              |
|                                        | Laboratory    | AEL          | LEA          |              |          |             |              |              |
|                                        | Lab. Number   | AEL96008990  | 96-3995-125  |              |          |             |              |              |
| Constituent                            | Units         |              |              |              |          |             |              |              |
| Tetrachloroethylene                    | μg/L          | <4.0         |              |              |          |             |              |              |
| Tetrachloroethylene (screening)        | μg/l          | Ī            | <4           |              |          |             |              |              |
| Tohuene                                | μg/L          | <4.0         |              |              |          |             |              |              |
| Tohiene (screening)                    | μg/l          |              | <2           |              |          |             |              |              |
| Trichloroethane, 1, 1, 1-              | μg/L          | <4.0         |              |              |          |             |              |              |
| Trichloroethane, 1, 1, 1 - (screening) | μg/l          |              | <36          |              |          |             |              |              |
| Trichloroethane, 1, 1, 2-              | μg/L          | <4.0         |              |              |          |             |              |              |
| Trichloroethylene                      | μ <b>g</b> /L | <4.0         |              |              |          |             |              |              |
| Trichloroethylene (screening)          | μ <b>g/</b> Ι |              | <4           |              |          |             |              |              |
| Trichloromonofluoromethane             | μ <b>g</b> /L | <4.0         |              |              |          |             |              |              |
| Trichloropropane, 1, 2, 3-             | μ <b>g</b> /L | <4.0         |              |              |          |             |              |              |
| Vinyl Acetate                          | μg/L          | <4.0         |              |              |          |             |              |              |
| Vinyl Chloride                         | μg/L          | <2.0         |              |              |          |             |              |              |
| Xylenes (Total)                        | μg/L          | <4.0         |              |              |          |             |              |              |
|                                        |               | 1            |              |              |          |             |              |              |
|                                        |               |              |              |              | <u> </u> |             |              |              |
|                                        |               |              |              |              |          |             |              |              |
|                                        |               |              |              |              |          |             |              |              |
|                                        |               |              |              |              |          |             |              |              |
|                                        |               |              |              |              |          |             |              |              |
|                                        |               |              |              |              |          |             |              |              |
|                                        |               |              |              |              |          |             |              |              |
|                                        |               | <u> </u>     |              | <b> </b>     |          |             |              |              |
|                                        |               |              | 1            |              | <u> </u> |             |              | <u> </u>     |
|                                        |               | <b></b>      |              | <u> </u>     |          |             |              |              |
|                                        |               | <u> </u>     |              |              |          |             | ·            |              |
|                                        |               |              |              |              |          |             |              |              |
|                                        |               | †            | <del> </del> | <del> </del> |          |             | <del> </del> | <del> </del> |
| otes: 1. Printed on 09/24/98           |               | <del> </del> | <del></del>  |              |          | <del></del> | <del> </del> |              |

LΕΔ

#### Table 5 SUMMARY OF ANALYTICAL RESULTS - GROUNDWATER P&W East Hartford: X-314 Septic System Area

DRAFT

|                              |               |                    |              | <br> |         |   | Page 1 of 3 |
|------------------------------|---------------|--------------------|--------------|------|---------|---|-------------|
|                              | Location ID   | NK-SB-46           | NK-SB-46     |      |         |   |             |
|                              | Sample ID     | 1017205            | 1017205      |      |         |   |             |
|                              | Sample Date   | 08/13/1996         | 08/13/1996   |      |         |   |             |
|                              | Sample Time   | 11:50              | 11:50        |      |         |   |             |
|                              | Sample Depth  | 9.5' - 10.5'       | 9.5' - 10.5' |      |         |   |             |
|                              | Laboratory    | AEL                | LEA          |      |         |   |             |
|                              | Lab. Number   | AEL96008990        | 96-3995-125  |      |         |   |             |
| Constituent                  | Units         |                    |              |      |         |   |             |
| Date Metals Analysed         | •             | 08/14/1996         |              |      |         |   |             |
| Date Organics Analysed       | -             | 08/26/1996         | 08/16/1996   |      |         |   |             |
| Date Physical Analysed       | -             | <b>08/14</b> /1996 |              |      |         |   |             |
| Arsenic                      | mg/L          | <0.004             |              |      |         |   |             |
| Barium                       | mg/L          | 0.028              |              |      |         |   |             |
| Cadmium                      | mg/L          | <0.0010            |              |      |         |   |             |
| Chromium                     | mg/L          | <0.010             |              |      |         |   |             |
| Load                         | mg/L          | <0.0050            |              |      |         |   |             |
| Mercury                      | mg/L          | <0.0004            |              |      |         |   |             |
| Nickel                       | mg/L          | 0.079              |              |      |         |   |             |
| Selenium                     | mg/L          | <0.010             |              |      |         |   |             |
| Silver                       | mg/L          | <0.010             |              |      |         |   |             |
| Zinc                         | mg/L          | 0.026              |              |      |         |   |             |
| Total Petroleum Hydrocarbons | mg/L          | <0.5               |              |      |         |   |             |
| Acetone                      | μ <b>g/</b> L | <20                |              |      |         |   |             |
| Acrolein                     | μ <b>g/</b> L | <10                |              |      |         |   |             |
| Acrylonitrile                | μ <b>g/L</b>  | <0.66 **           |              |      |         |   |             |
| Benzens                      | μ <b>g</b> /L | <1.0               |              |      |         |   |             |
| Benzene (screening)          | μg/l          |                    | <1           |      |         |   |             |
| Bromobenzene                 | μ <b>g</b> /L | <4.0               |              |      |         | 1 |             |
| Bromoform                    | μ <b>g/</b> L | <4.0               |              |      |         |   |             |
| Carbon Disulfide             | μg/L          | <4.0               |              |      |         |   |             |
| Carbon Tetrachloride         | μ <b>g/</b> L | <4.0               |              |      |         |   |             |
| Chlorobenzene                | μg/L          | <4.0               |              |      |         |   |             |
| Chlorodibromomethane         | μ <b>g</b> /L | <0.31 **           |              |      | <u></u> |   |             |
| Chloroethane                 | μ <b>g</b> /L | <4.0               |              |      |         |   |             |
| Chloroethyl Vinyl Ether,2-   | μ <b>g</b> /L | <4.0               |              |      |         |   |             |
| Chloroform                   | μ <b>g/</b> L | <4.0               |              |      |         |   |             |
|                              |               |                    |              |      |         |   |             |

# Table 5 SUMMARY OF ANALYTICAL RESULTS - GROUNDWATER P&W East Hartford: X-314 Septic System Area

Page 2 of 3

|                                |               |              |              | <br> |          |           | Page 2 of 3 |
|--------------------------------|---------------|--------------|--------------|------|----------|-----------|-------------|
|                                | Location ID   | NK-SB-46     | NK-SB-46     |      |          |           |             |
|                                | Sample ID     | 1017205      | 1017205      |      |          |           |             |
|                                | Sample Date   | 08/13/1996   | 08/13/1996   |      |          |           |             |
|                                | Sample Time   | 11:50        | 11:50        |      |          |           |             |
|                                | Sample Depth  | 9.5' - 10.5' | 9.5' - 10.5' |      |          |           |             |
|                                | Laboratory    | AEL          | LEA          |      |          |           |             |
|                                | Lab. Number   | AEL96008990  | 96-3995-125  |      |          | ļ <u></u> |             |
| Constituent                    | Units         |              |              |      |          |           |             |
| Chiorotoluene,o-               | μg/L          | <4.0         |              |      |          |           |             |
| Chlorotoluene,p-               | μg/L          | <4.0         |              |      | <u> </u> |           |             |
| Dibromomethane                 | μg/L          | <4.0         |              |      |          |           |             |
| Dichlorobenzene, 1, 2-         | μg/L          | <4.0         |              |      |          |           |             |
| Dichlorobenzene, 1,3-          | μg/L          | <4.0         |              |      |          | <u></u>   |             |
| Dichlorobenzene, 1,4-          | μg/L          | <4.0         |              |      |          |           |             |
| Dichlorobromomethane           | μg/L          | <4.0         |              |      |          |           |             |
| Dichlorodifluoromethane        | μg/L          | <4.0         |              |      |          |           |             |
| Dichloroethane, 1,1-           | μg/L          | <4.0         |              |      |          |           |             |
| Dichloroethane, 1,2-           | μg/L          | <1.0         |              |      |          |           |             |
| Dichloroethylene, 1, 1-        | μg/L          | <1.4         |              |      |          |           |             |
| Dichloroethylene, 1,2-cis-     | μg/L          | <4.0         |              |      |          |           |             |
| Dichloroethylene, 1,2-trans-   | μg/L          | <4.0         |              |      |          |           |             |
| Dichloropropane, 1,2-          | μg/L          | <4.0         |              |      |          |           |             |
| Dichloropropylene,1,3-cis-     | μg/L          | <0.22 **     |              |      |          |           |             |
| Dichloropropylene, 1, 3-trans- | μ <b>g</b> /L | <0.82        |              |      |          |           |             |
| Ethylbenzene                   | μg/L          | <4.0         |              |      |          |           |             |
| Ethylbenzene (screening)       | μg/l          |              | ⋖            |      |          |           |             |
| Hexanone,2-                    | μg/L          | <10          |              |      |          |           |             |
| Methyl Bromide                 | μg/L          | <4.0         |              |      |          |           |             |
| Methyl Chloride                | μg/L          | <4.0         |              |      |          |           |             |
| Methyl Ethyl Ketone            | μg/L          | <10          |              |      |          |           |             |
| Methyl-2-pentanone,4-          | μg/L          | <10          |              |      |          |           |             |
| Methyl-tert-butyl Ether        | μ <b>g/</b> L | <4.0         |              |      |          |           |             |
| Methylene Chloride             | μg/L          | <4.0         |              |      |          |           |             |
| Styrene                        | μ <b>g</b> /L | <4.0         |              |      |          |           |             |
| Tetrachloroethane, 1, 1, 1, 2- | μg/L          | <1.0         |              |      |          |           |             |
| Tetrachloroethane, 1, 1, 2, 2- | μg/L          | <0.30 **     |              |      |          |           |             |
| V                              |               | L            |              |      |          | L         |             |

### Table 6 DRAFT SUMMARY OF SAMPLING AND ANALYTICAL INFORMATION (DETECTS) - SLUDGE P&W East Hartford: X-314 Septic System Area

Page 1 of 1

|                        |             |             |                                                  |                                       |   |              |   | rage 1 01 1 |
|------------------------|-------------|-------------|--------------------------------------------------|---------------------------------------|---|--------------|---|-------------|
|                        | Location ID | NK-SL-04    |                                                  |                                       |   |              |   |             |
|                        | Sample ID   | 1006167     |                                                  |                                       |   |              |   |             |
|                        | Sample Date | 08/02/1995  |                                                  |                                       |   |              |   |             |
|                        | Sample Time | 13:17       |                                                  |                                       |   |              |   |             |
|                        | Laboratory  | AEL         |                                                  |                                       |   |              |   |             |
|                        | Lab, Number | AEL95008561 |                                                  |                                       |   |              |   |             |
| Constituent            | Units       |             |                                                  |                                       |   |              |   |             |
| Date Metals Analysed   | -           | 08/11/1995  |                                                  |                                       |   |              |   |             |
| Date Organics Analysed |             | 08/10/1995  |                                                  |                                       |   |              |   |             |
| Barium                 | mg/kg       | 7.6         |                                                  |                                       |   |              |   |             |
| Chloroethane           | μg/kg       | 270         |                                                  |                                       |   | 1            |   | 1           |
| Xylenes (Total)        | μg/kg       | 23          |                                                  |                                       |   |              |   |             |
|                        |             |             |                                                  |                                       |   |              |   |             |
|                        |             |             |                                                  |                                       |   | 1            |   |             |
|                        |             |             |                                                  |                                       |   |              |   |             |
|                        |             | ,           |                                                  |                                       |   |              |   |             |
|                        |             |             |                                                  |                                       |   |              |   |             |
|                        |             |             |                                                  |                                       |   |              |   |             |
|                        |             |             |                                                  |                                       |   |              |   |             |
|                        |             |             |                                                  |                                       |   |              |   |             |
|                        |             |             |                                                  |                                       |   |              |   |             |
|                        |             |             |                                                  |                                       |   |              |   |             |
|                        |             |             |                                                  |                                       |   |              |   |             |
|                        |             |             |                                                  |                                       |   |              |   |             |
|                        |             |             |                                                  |                                       |   |              |   |             |
|                        |             |             |                                                  |                                       |   |              |   |             |
|                        |             |             |                                                  |                                       |   |              |   |             |
|                        |             |             |                                                  |                                       |   |              |   |             |
|                        |             |             |                                                  |                                       |   |              |   |             |
|                        |             |             |                                                  |                                       |   |              |   |             |
|                        |             |             |                                                  |                                       |   |              |   |             |
|                        |             |             |                                                  |                                       |   |              |   |             |
|                        |             |             |                                                  |                                       |   |              |   |             |
|                        |             |             |                                                  |                                       |   |              |   |             |
|                        |             |             |                                                  | · · · · · · · · · · · · · · · · · · · |   |              |   |             |
|                        |             |             |                                                  |                                       |   |              |   |             |
|                        | <del></del> | <del></del> | <del>                                     </del> |                                       | ļ | <del> </del> | L | <del></del> |

Notes: 1. Only Detects Shown

2. Printed on 09/25/98

LEΔ

### Table 7 SUMMARY OF ANALYTICAL RESULTS - SLUDGE P&W East Hartford: X-314 Septic System Area

Page 1 of 3

|                        |               |             | <br> | <br> | <br>Page 1 of 3 |
|------------------------|---------------|-------------|------|------|-----------------|
|                        | Location ID   | NK-SL-04    |      |      |                 |
|                        | Sample ID     | 1006167     |      |      |                 |
|                        | Sample Date   | 08/02/1995  |      |      |                 |
|                        | Sample Time   | 13:17       |      |      |                 |
|                        | Laboratory    | AEL         |      |      |                 |
|                        | Lab. Number   | AEL95008561 |      |      |                 |
| Constituent            | Units         |             | <br> |      |                 |
| Date Metals Analysed   |               | 08/11/1995  |      |      |                 |
| Date Organics Analysed |               | 08/10/1995  | <br> |      |                 |
| Date PCBs Analysed     | •             | 08/21/1995  |      |      |                 |
| Arsenic                | mg/kg         | <1.17       |      |      |                 |
| Barium                 | mg/kg         | 7.6         |      |      |                 |
| Cadmium                | mg/kg         | <3.51       |      |      |                 |
| Chromium               | mg/kg         | <5.84       |      |      |                 |
| Lead                   | mg/kg         | <23.4       |      |      |                 |
| Mercury                | mg/kg         | <0.234      |      |      |                 |
| Selenium               | mg/kg         | <1.17       |      |      |                 |
| Silver                 | mg/kg         | <5.84       | <br> |      |                 |
| PCB 1016               | μg/kg         | <240        |      |      |                 |
| PCB 1221               | μg/kg         | <240        |      |      |                 |
| PCB 1232               | μg/kg         | <240        |      |      |                 |
| PCB 1242               | μg/kg         | <240        |      |      |                 |
| PCB 1248               | μg/kg         | <240        |      |      |                 |
| PCB 1254               | μg/kg         | <240        |      |      |                 |
| PCB 1260               | μg/kg         | <240        |      |      |                 |
| Acetone                | μg/kg         | <110        |      |      |                 |
| Acrolein               | μg/kg         | <55         |      |      |                 |
| Acrylonitrile          | μg/kg         | <55         |      |      |                 |
| Benzene                | μg/kg         | <15         |      |      |                 |
| Bromobenzene           | μ <b>g/kg</b> | <22         |      |      |                 |
| Bromoform              | μg/kg         | <22         |      |      |                 |
| Carbon Disulfide       | μg/kg         | <22 N1      |      |      |                 |
| Carbon Tetrachloride   | μg/kg         | <22         |      |      |                 |
| Chlorobenzene          | μg/kg         | <22         |      |      |                 |
| Chlorodibromomethane   | μg/kg         | <22         |      |      |                 |
| Chloroethane           | μg/kg         | 270         |      | <br> | <br>            |
| V-4 1 D-21 00 M/00     |               |             |      |      |                 |

### Table 7 SUMMARY OF ANALYTICAL RESULTS - SLUDGE P&W East Hartford: X-314 Septic System Area

Page 2 of 3

|                                |               |             |   | <br> |   | <br>Page 2 of 3 |
|--------------------------------|---------------|-------------|---|------|---|-----------------|
|                                | Location ID   | NK-SL-04    |   |      |   |                 |
|                                | Sample ID     | 1006167     |   |      |   |                 |
|                                | Sample Date   | 08/02/1995  |   |      |   |                 |
|                                | Sample Time   | 13:17       |   |      |   |                 |
| _                              | Laboratory    | AEL         |   |      |   |                 |
|                                | Lab. Number   | AEL95008561 |   |      |   |                 |
| Constituent                    | Units         |             |   |      |   |                 |
| Chloroethyl Vinyl Ether,2-     | μg/kg         | <22         |   |      |   |                 |
| Chloroform                     | μ <b>g/kg</b> | <22         |   |      |   |                 |
| Chlorotohiene,o-               | μ <b>g/kg</b> | <22         |   |      |   |                 |
| Chlorotoluene,p-               | μg/ <b>kg</b> | <22         |   |      |   |                 |
| Dibromomethane                 | μ <b>g/kg</b> | <22         |   |      |   |                 |
| Dichlorobenzene, 1,2-          | μg/kg         | <22         |   |      |   | <br>            |
| Dichlorobenzene, 1,3-          | μg/kg         | <22         |   |      |   |                 |
| Dichlorobenzene, 1,4-          | μg/kg         | <22         |   |      | L |                 |
| Dichlorobromomethane           | μ <b>g/kg</b> | <22         |   |      |   |                 |
| Dichlorodifluoromethane        | μg/kg         | <22         |   |      |   |                 |
| Dichlorosthane, 1, 1-          | μg/ <b>kg</b> | <22         |   |      |   |                 |
| Dichlorosthane, 1,2-           | μg/kg         | <22         |   |      |   |                 |
| Dichloroethylene,1,1-          | μg/kg         | <22         |   |      |   |                 |
| Dichloroethylene, 1,2-cis-     | μg/kg         | <22         |   |      |   |                 |
| Dichloroethylene, 1,2-trans-   | μg/kg         | <22         |   |      |   |                 |
| Dichloropropane, 1,2-          | μg/kg         | <22         |   |      |   |                 |
| Dichloropropylene, 1, 3-cis-   | μg/kg         | <22         |   |      |   |                 |
| Dichloropropylene, 1,3-trans-  | μg/kg         | <22         |   |      |   |                 |
| Ethylbenzene                   | μ <b>g/kg</b> | <15 N1      |   |      |   |                 |
| Hexanone,2-                    | μ <b>g/kg</b> | <55         |   |      |   |                 |
| Methyi Bromide                 | μ <b>g/kg</b> | <22         |   |      |   |                 |
| Methyl Chloride                | μg/kg         | <22         |   |      |   |                 |
| Methyl Ethyl Ketone            | μ <b>g/kg</b> | <55         |   |      |   |                 |
| Methyi-2-pentanone,4-          | μg/kg         | <55         |   |      |   |                 |
| Methyl-tert-butyl Ether        | μ <b>g/kg</b> | <22 N1      |   |      |   |                 |
| Methylene Chloride             | μg/kg         | <22         |   |      |   |                 |
| Styrene                        | μg/kg         | <22         |   |      |   |                 |
| Tetrachloroethane, 1, 1, 1, 2- | μg/kg         | <22         |   |      |   |                 |
| Tetrachloroethane, 1, 1, 2, 2- | μg/kg         | <22         |   |      |   |                 |
|                                |               |             | T |      | T |                 |

# Table 7 SUMMARY OF ANALYTICAL RESULTS - SLUDGE P&W East Hartford: X-314 Septic System Area

Page 3 of 3

|                            |               |             |   |  |          | Page 3 of 3 |
|----------------------------|---------------|-------------|---|--|----------|-------------|
|                            | Location ID   | NK-SL-04    |   |  |          |             |
|                            | Sample ID     | 1006167     |   |  |          |             |
|                            | Sample Date   | 08/02/1995  |   |  |          |             |
|                            | Sample Time   | 13:17       |   |  |          |             |
|                            | Laboratory    | AEL         |   |  |          |             |
|                            | Lab. Number   | AEL95008561 |   |  |          |             |
| Constituent                | Units         |             |   |  |          |             |
| Tetrachloroethylene        | μg/kg         | <22         |   |  |          |             |
| Toluene                    | μg/kg         | <15 N1      |   |  |          |             |
| Trichloroethane,1,1,1-     | μg/kg         | <22         |   |  |          |             |
| Trichloroethane, 1, 1, 2-  | μg/kg         | <22         |   |  |          |             |
| Trichloroethylene          | μg/kg         | <22         |   |  |          |             |
| Trichloromonofluoromethane | μg/kg         | <22         |   |  |          |             |
| Trichloropropane, 1,2,3-   | μ <b>g/kg</b> | <22         |   |  |          |             |
| Vinyl Acetate              | μg/kg         | <22         |   |  |          |             |
| Vinyl Chloride             | μg/kg         | <22         |   |  |          |             |
| Xylenes (Total)            | μg/kg         | 23          |   |  |          |             |
|                            |               |             |   |  |          |             |
|                            |               |             |   |  |          |             |
|                            |               |             | l |  | <u> </u> |             |
|                            |               |             |   |  |          |             |
|                            |               |             |   |  |          |             |
|                            |               |             |   |  |          |             |
|                            |               |             |   |  |          |             |
|                            |               | 1           |   |  |          |             |
|                            |               |             |   |  |          |             |
|                            |               |             |   |  |          |             |
|                            |               |             |   |  |          |             |
|                            |               |             |   |  |          |             |
|                            |               |             |   |  |          |             |
|                            |               |             |   |  |          |             |
|                            |               |             |   |  |          |             |
|                            |               |             |   |  |          |             |
|                            |               |             |   |  |          |             |
|                            |               |             |   |  |          |             |
|                            |               | 1           |   |  | 1        |             |
|                            |               |             |   |  |          |             |

DRAWINGS

| Facility Name: PRATT & WHITNEY - MAIN STREET  Facility ID#: CTD990672081  Phase Classification: R-5  Purpose of Target Sheet:  [X] Oversized (in Site File) [ ] Oversized (in Map Drawe  [ ] Page(s) Missing (Please Specify Below)  [ ] Privileged [ ] Other (Provide Purpose Below)  Description of Oversized Material, if applicable:  DRAWING 1: SOIL INVESTIGATIONS, X-314 AREA SEPTIC SYSTEM, LOCATION & CONSTITUENTS DETECTED MAP  [X] Map [ ] Photograph [ ] Other (Specify Below) | RDMS Document ID # 2665                                       | <u> </u>                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------|
| Phase Classification: R-5  Purpose of Target Sheet:  [X] Oversized (in Site File) [ ] Oversized (in Map Drawe  [ ] Page(s) Missing (Please Specify Below)  [ ] Privileged [ ] Other (Provide Purpose Below)  Description of Oversized Material, if applicable:  DRAWING 1: SOIL INVESTIGATIONS, X-314 AREA SEPTIC SYSTEM, LOCATION & CONSTITUENTS  DETECTED MAP                                                                                                                            | Facility Name: <u>PRATT &amp; W</u>                           | VHITNEY - MAIN STREET                      |
| Purpose of Target Sheet:  [X] Oversized (in Site File) [ ] Oversized (in Map Drawe)  [ ] Page(s) Missing (Please Specify Below)  [ ] Privileged [ ] Other (Provide Purpose Below)  Description of Oversized Material, if applicable:  DRAWING 1: SOIL INVESTIGATIONS, X-314 AREA SEPTIC SYSTEM, LOCATION & CONSTITUENTS  DETECTED MAP                                                                                                                                                      | Facility ID#: <u>CTD9906720</u>                               | 081                                        |
| [ X ] Oversized (in Site File) [ ] Oversized (in Map Drawe [ ] Page(s) Missing (Please Specify Below) [ ] Privileged [ ] Other (Provide Purpose Below)  Description of Oversized Material, if applicable:  DRAWING 1: SOIL INVESTIGATIONS, X-314 AREA SEPTIC SYSTEM, LOCATION & CONSTITUENTS DETECTED MAP                                                                                                                                                                                  | Phase Classification: R-5                                     | <u> </u>                                   |
| [ ] Page(s) Missing (Please Specify Below)  [ ] Privileged [ ] Other (Provide Purpose Below)  Description of Oversized Material, if applicable:  DRAWING 1: SOIL INVESTIGATIONS, X-314 AREA SEPTIC SYSTEM, LOCATION & CONSTITUENTS DETECTED MAP                                                                                                                                                                                                                                            | Purpose of Target Sheet:                                      |                                            |
| [ ] Privileged [ ] Other (Provide Purpose Below)  Description of Oversized Material, if applicable:  DRAWING 1: SOIL INVESTIGATIONS, X-314 AREA SEPTIC SYSTEM, LOCATION & CONSTITUENTS DETECTED MAP                                                                                                                                                                                                                                                                                        | [X] Oversized (in Site File)                                  | Oversized (in Map Drawer)                  |
| Purpose Below)  Description of Oversized Material, if applicable:  DRAWING 1: SOIL INVESTIGATIONS, X-314 AREA SEPTIC SYSTEM, LOCATION & CONSTITUENTS DETECTED MAP                                                                                                                                                                                                                                                                                                                          | [ ] Page(s) Missing (Pleas                                    | se Specify Below)                          |
| DRAWING 1: SOIL INVESTIGATIONS, X-314 AREA SEPTIC SYSTEM, LOCATION & CONSTITUENTS DETECTED MAP                                                                                                                                                                                                                                                                                                                                                                                             | [ ] Privileged                                                |                                            |
| SEPTIC SYSTEM, LOCATION & CONSTITUENTS DETECTED MAP                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                               | aterial if annlicable:                     |
| DETECTED MAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Description of Oversized Ma                                   | actiai, it applicable.                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DRAWING 1: SOIL INVES                                         | STIGATIONS, X-314 AREA                     |
| [X ] Man [ ] Photograph [ ] Other (Specify Relow)                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                             |                                            |
| [12] Map [ ] I Hoodgraph [ ] Center (Speemy Delow)                                                                                                                                                                                                                                                                                                                                                                                                                                         | DRAWING 1: SOIL INVES                                         | STIGATIONS, X-314 AREA                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DRAWING 1: SOIL INVES<br>SEPTIC SYSTEM, LOCAT<br>DETECTED MAP | STIGATIONS, X-314 AREA FION & CONSTITUENTS |

<sup>\*</sup> Please Contact the EPA New England RCRA Records Center to View This Document \*

| Facility Name: <u>PRATT &amp; W</u> | HITNEY - MAIN STREET                                                          |
|-------------------------------------|-------------------------------------------------------------------------------|
| Facility ID#: <u>CTD9906720</u>     | 81                                                                            |
| Phase Classification: R-5           |                                                                               |
| Purpose of Target Sheet:            |                                                                               |
| [X] Oversized (in Site File)        | [ ] Oversized (in Map Drawer)                                                 |
| [ ] Page(s) Missing (Please         | e Specify Below)                                                              |
| [ ] Privileged                      | Other (Provide Purpose Below)                                                 |
|                                     | aterial, if applicable:  VATER INVESTIGATIONS, X-314  LOCATION & CONSTITUENTS |
| [X] Map [] Photogr                  | raph [ ] Other (Specify Below)                                                |

<sup>\*</sup> Please Contact the EPA New England RCRA Records Center to View This Document \*

)

)

### TECHNICAL MEMORANDUM 8 GEOPHYSICAL SURVEYING

# SUMMARY SITE INVESTIGATION AND REMEDIATION REPORT AIRPORT/KLONDIKE AREA AT PRATT & WHITNEY EAST HARTFORD, CONNECTICUT EPA ID No. CTD990672081

#### Prepared for:

PRATT & WHITNEY
400 Main Street
East Hartford, Connecticut 06108

Prepared by:

LOUREIRO ENGINEERING ASSOCIATES 100 Northwest Drive Plainville, Connecticut 06062

LEA Comm. No. 68V8124

|                  | Table of Contents                                         |             |
|------------------|-----------------------------------------------------------|-------------|
|                  |                                                           | Page        |
| 1. INTRODUCTI    | ON                                                        | 1-1         |
| 1.1 Purpose and  | Objective                                                 | 1-1         |
| 1.2 Background   | <del>-</del>                                              | 1-1         |
| 1.3 Scope        |                                                           | 1-1         |
| 1.4 General Geo  | ologic and Hydrogeologic Conditions                       | 1-2         |
| 1.5 Geophysical  | Surveying Techniques                                      | 1-2         |
| 2. METHODOLO     | OGY                                                       | 2-1         |
| 2.1 Seismic Refi | raction Surveying                                         | 2-1         |
| _                | netic Terrain Conductivity Surveying                      | 2-2         |
|                  | etrating Radar Surveying                                  | 2-2         |
| 2.4 Magnetomet   | · ·                                                       | 2-3         |
| •                | urance/Quality Control Procedures                         | 2-3         |
|                  | ation of Materials and Equipment                          | 2-4         |
| 2.7 Waste Mana   |                                                           | 2-4         |
| 2.8 Health and S | Safety                                                    | 2-4         |
| 3. RESULTS       |                                                           | 3-1         |
| 3.1 Seismic Refr | raction Survey                                            | 3-1         |
| 3.2 Electromagn  | netic Terrain Conductivity Survey                         | 3-2         |
| 3.3 Ground Pene  | etrating Radar Survey                                     | 3-3         |
| 3.3.1 South      | Klondike Area                                             | 3-3         |
|                  | er Army Barracks Septic Systems                           | 3-4         |
| 3.3.3 Tie-D      |                                                           | 3-4         |
|                  | r Lane Pickle Company                                     | 3-4         |
|                  | 2/X-314 Test Stand Area                                   | 3-5         |
|                  | er Explosives Storage Area                                | 3-5         |
|                  | e Gas/Chemical Storage Building                           | 3-5         |
| 3.4 Magnetomet   | •                                                         | 3-5         |
| 3.4.1 Tie-D      |                                                           | 3-5         |
|                  | 2/X-314 Test Stand Area                                   | 3-6         |
|                  | r Lane Pickle Company                                     | 3-6         |
| 3.4.4 Linde      | e Gas/Chemical Storage Building                           | 3-6         |
| DRAWINGS         |                                                           |             |
| Drawing TM8-1    | Seismic Refraction Profile, Airport Area                  |             |
| Drawing TM8-2    | Electromagnetic Terrain Conductivity Profiles, Airport/Kl | ondike Area |
| Drawing TM8-3    | Glaciolacustrine Sediment Surface, South Klondike Area    |             |
| Drawing TM8-4    | North Airport Septic Systems                              |             |

#### Acronyms

| DC    | Direct Current                                              |
|-------|-------------------------------------------------------------|
| DEP   | State of Connecticut Department of Environmental Protection |
| DPH   | State of Connecticut Department of Public Health            |
| EM    | Electromagnetic Terrain Conductivity                        |
| F&O   | Fuss & O'Neill, Inc.                                        |
| GPR   | Ground Penetrating Radar                                    |
| H&A   | Haley & Aldrich, Inc.                                       |
| LEA   | Loureiro Engineering Associates, Inc.                       |
| M&E   | Metcalf & Eddy, Inc.                                        |
| MHz   | Megahertz                                                   |
| MSL   | Mean Sea Level                                              |
| P&W   | Pratt & Whitney                                             |
| PPE   | Personal Protective Equipment                               |
| QA/QC | Quality Assurance/Quality Control                           |
| SOP   | Standard Operating Procedure                                |
| TM    | Technical Memoranda                                         |
| VPSA  | Virgin Product Storage Area                                 |



#### 1. INTRODUCTION

#### 1.1 Purpose and Objective

This Technical Memorandum (TM) presents the methodology and results of the geophysical surveying conducted in the Airport/Klondike Area (Site) of the Pratt & Whitney (P&W) facility located at 400 Main Street (Main Street facility) in the Town of East Hartford, Connecticut. Geophysical surveying using various techniques was conducted to:

- define the upper surface of the glaciolacustrine sediments in the South Klondike Area;
- to locate and determine the boundaries of former septic systems associated with the former Army barracks and training area located in the North Airport Area;
- to locate and determine the boundaries of former septic systems associated with former test stands in the Klondike Area;
- to determine the existence of the magnetic anomalies in the Airport/Klondike Area; and,
- to determine the depth to bedrock in the Airport Area.

#### 1.2 Background

The Airport/Klondike Area is located on the eastern portion of the P&W Main Street facility on the east side of the main plant, north of Brewer Street and south of Silver Lane. The Airport/Klondike Area consists of four study areas that include the North and South Airport Areas and the North and South Klondike Areas. Previous investigations at the Site performed from 1990 through 1993 resulted in the installation and sampling of soil borings, groundwater monitoring wells and temporary wellpoints, surface water and sediment throughout the Airport/Klondike Area. Additional investigations have been conducted to define geologic conditions and anthropogenic structures at the Site which could impact contaminant transport and assist in conducting investigation activities.

#### 1.3 Scope

This TM covers the techniques and methodologies of the geophysical surveying conducted in the Airport/Klondike Area. The methods and techniques discussed are those used by geophysical contractors and consultants during the period from approximately 1990 through 1996.



#### 1.4 General Geologic and Hydrogeologic Conditions

The geologic and hydrogeologic characteristics of the Site are discussed in detail in the main body of this report. In general, the surficial materials, in which the majority of the monitoring wells are screened, consist of medium to fine grained sands with trace levels of fine gravels and coarse sands. These sediments are generally post-glacial, fluvial deposits associated with the Connecticut River, although in many places the upper portion of these sediments has been anthropogenically disturbed during on-site construction activities. Beneath the fluvial sediments are glaciolacustrine sediments, primarily laminated silts and clays, associated with glacial Lake Hitchcock. The basal sediment layer over most of the area is glacial till and stratified drift. Bedrock in the general East Hartford area consists of Triassic Age, interbedded arkoses and basalts. Bedrock in the area has a general slight dip eastward cut by widespread steep faults.

The regional drainage basin is the Upper Connecticut River Basin. Regional flow in the unconsolidated materials of this part of the basin is to the west, towards the Connecticut River. Local groundwater flow is also controlled to some extent by local drainage sub-basins and topography. The upper portion of the unconsolidated sediments serves as the primary aquifer in the area. Groundwater flow in the bedrock is primarily within fractures and fault planes, and to a lesser extent within the rock matrix. The local bedrock aquifer would be an adequate as a residential water supply source, but groundwater yields are typically too low to be of commercial or industrial use.

#### 1.5 Geophysical Surveying Techniques

\$

Various geophysical surveying techniques have been applied at the Site to provide different information regarding the nature of the surficial materials at the Site. These methods include seismic refraction surveying, electromagnetic surveying, ground penetrating radar surveying, and magnetometry.

Seismic refraction surveying consists of measuring the time it takes sound waves to travel through materials and relating that time to the nature of the materials. Seismic refraction surveying uses a system of vibration-sensitive receivers to detect and record sonic energy refracted from subsurface horizons. Seismic refraction surveying has been used in the Airport Area to define the depth to bedrock and the general nature of the unconsolidated materials.

Electromagnetic surveying consists of measuring the response of the geologic materials to induced electromagnetic fields. Electromagnetic surveying uses a coupled transmitter and receiver to induce and measure electromagnetic eddy currents in buried conductive objects.



Electromagnetic surveying has typically been used to locate areas where buried metallic objects may be located.

Ground penetrating radar (GPR) surveying consists of recording and converting radar signals reflected from subsurface materials. The GPR system transmits and receives pulsed electromagnetic energy and converts the received signals into indications of the change of the dielectric constants between subsurface materials or buried objects. GPR surveying has typically been used to located buried objects, such as pipes or tanks, that have significantly different dielectric properties from the surrounding soil.

Magnetometry is the measurement of variations in the normal magnetic field caused by the presence of buried magnetically susceptible objects. The magnetometry system consists of a magnetic field detector mounted on a staff to provide a constant height above the ground surface and connected to a recording device. Magnetometry is typically used to locate buried metallic objects.

#### 2. METHODOLOGY

This section presents the general procedures and methodologies used to conduct and analyze the data from the various geophysical surveying techniques used in the Airport/Klondike Area. These methods were used by LEA, and also by previous consultants and contractors who performed geophysical surveying at the Site.

#### 2.1 Seismic Refraction Surveying

Seismic refraction surveying was conducted on December 6 through 8, 1989, in the Airport Area by Weston Geophysical, Corp., as subcontractors to Westinghouse Environmental and Geotechnical Services, Inc.

Seismic refraction surveying consists of measuring the time-of-travel associated with compressional, or "P," seismic waves. The time-of-travel of the seismic waves can be related to the nature, composition, degree of induration, and degree of saturation of the material the waves are traveling through.

The seismic waves are generated by a "shot," or high-velocity acoustic wave generation event, at the "shot point," or the location of the shot. The shot can be generated by various sources such as air guns, hand-held drop weights, or small explosive charges. The waves are detected by vibration sensitive devices known as geophones. Geophones convert the seismic vibrations, or waves, into electrical signals and transmit those signals to a recording device through dedicated cables.

Interpretations of the geology are made from the analysis of the travel time curves which show the time required for each compressional seismic wave to travel from the shot point to the geophones. In general, velocity ranges of approximately 500 to 6,000 feet per second are indicative of unconsolidated sandy or gravelly materials. The lower velocity range is indicative of unsaturated materials with the seismic velocity range increasing with increasing saturation and density. Seismic velocity ranges of approximately 500 to 8,000 feet per second are indicative of clay units. Seismic velocity ranges of approximately 5,000 to 16,500 feet per second are indicative of consolidated rocks such as sandstone. Bedrock can have seismic velocities which span the entire range from that of unconsolidated sediments upwards, depending upon the type of bedrock and the degree of weathering and/or fracturing.



#### 2.2 Electromagnetic Terrain Conductivity Surveying

Electromagnetic terrain conductivity (EM) surveying was performed on December 4 through 7, 1989, in the Airport/Klondike Area by Westinghouse.

EM uses a transmitter, or coil, to generate a magnetic field. The magnetic field induces eddy currents within the earth. The eddy currents produce secondary electromagnetic fields which are measured by a receiver coil. The strength of the secondary electromagnetic fields is related to the conductivity of the subsurface materials. The measured conductivity is the weighted cumulative sum of the conductivities from the surface to the effective depth of the instrument. The effective depth of the instrument is a function of the separation of the transmitting and receiving coils.

EM is useful for mapping of shallow conductive bodies, including conductive contaminant plumes, for the detection of buried bulk wastes, and for the detection of buried metal containers, including steel tanks and drums. However, EM is susceptible to interference from powerlines and surficial metals, and lacks vertical resolution compared to direct current (DC) electrical resistivity methods.

#### 2.3 Ground Penetrating Radar Surveying

4

Ground penetrating radar surveying (GPR) was used on May 24 through 26, 1993 in the South Klondike Area by Fuss & O'Neill, Inc. (F&O), and on August 6, 1996 in the former Army Barracks Area, on August 12, 1996 in the X-312/X-314 Test Stand Area, on September 6, 1996 in the former Explosives Storage Area and Linde Gas/Chemical Storage Building Area, and on October 15, 1996 in the former Silver Lane Pickle Company Area by Kick Geoexploration.

GPR is a geophysical technique based on the transmission and reflection of short, rapid bursts of high frequency radio waves. In practice, a GPR system consists of an integral transmitter and receiver which are dragged on the ground surface along a transect. The transmitting antenna emits electromagnetic radiation at a frequency between 80 Megahertz (MHz) and 1,000 MHz, depending on the receiving antenna. The receiver records the reflected GPR signal strength. These data can later be transferred to plotting devices for graphic output.

In the subsurface, a portion of the electromagnetic energy is reflected back toward the transmitter when an interface between two materials with differing electrical properties is intercepted. The effectiveness of a buried object as a reflector is a function of the contrast between the electrical properties of the buried object and the sediments. The effectiveness of GPR to identify buried objects is also dependent on the electrical properties of the sediments. In general, conductive



media such as silt and clay are effective GPR reflectors and thus limit the effective depth of the GPR signal. Less conductive sediments, such as sand and gravel, are less effective GPR reflectors and the effective depth of GPR signal penetration is much greater.

Interpretation of GPR is typically performed by visual inspection of the form and distribution of the reflected GPR signals. These data are translated into estimates of locations and interpretations of buried objects along the line of the GPR transect. When GPR is used to establish the geometry of the upper surface of a reflecting horizon, a combination of GPR and ground truthing is used to establish points on the reflecting horizon from which interpolations can be based. Ground truthing is the use of established depths, typically derived from borehole data, in conjunction with the GPR results.

#### 2.4 Magnetometry

Magnetometer surveys were performed by Kick Geoexploration on September 6, 1996, in the former Linde Gas/Chemical Storage Building Area, and the Tie-Down Area, and on October 15, 1996 in the former Silver Lane Pickle Company area.

Magnetometry surveying uses a sensitive magnetometer to measure and record anomalies and variations in the prevailing terrestrial magnetic field. The surveying technique uses a detector attached to a staff so that the detector is maintained a constant distance above the earth during the surveying. The detector is attached to a recording device.

In practice, a local base station is chosen where there is minimal variation in the magnetic field intensity, and all measurements are reported relative to the magnetic intensity detected at the base station. During the surveying, magnetic measurements are made and recorded at locations along a predefined grid. These magnetic intensities are then plotted and analyzed to determine the presence of anomalies that may represent buried metallic objects.

#### 2.5 Quality Assurance/Quality Control Procedures

Quality assurance/quality control (QA/QC) procedures used in performing the geophysical surveying varied depending upon the specific geophysical procedure used. For EM, the typical procedure was to perform functional tests of the instrumentation at the beginning of each work day, including checking the batteries, instrumental zero setting, instrumental sensitivity, compensation, and phase controls. In addition, background conductivity measurements were made at the beginning of each day in an area of the North Klondike identified as undisturbed.

The QA/QC procedures for GPR, magnetometry, and seismic refraction activities is limited to maintaining instrument calibration and performing proper instrument maintenance.

#### 2.6 Decontamination of Materials and Equipment

Because geophysical surveying are not intrusive techniques, there is no need for decontamination between different transects or between different methods.

#### 2.7 Waste Management

No wastes were generated by the geophysical surveying techniques employed at the Site.

#### 2.8 Health and Safety

LEA field personnel conducted field activities in accordance with the LEA Site Health and Safety Plan that was prepared for all of the investigation activities included on the Site. In general, geophysical surveying was conducted in modified Level D personal protective equipment (PPE) consisting of safety glasses and surgical or nitrile gloves, and steel-toed shoes. Geophysical surveyors employed as subcontractors operated in accordance with their specific health and safety plans.



#### 3. RESULTS

ê

#### 3.1 Seismic Refraction Survey

A total of 7,190 foot seismic refraction line was profiled along the eastern edge of the airport runway on December 6 through 8, 1989. The location of the seismic profile is shown on Drawing TM8-1. Based on overlapping geophone spreads, data sets from multiple seismic profiles were analyzed and correlated. An analysis of the seismic refraction data, based on seismic velocity only, was performed to characterize the thickness of the unconsolidated materials. Topographic elevation data from survey data and airport drainage plans was used to provide surface elevation data along the seismic line (Weston Geophysical Corp., 1990).

The seismic velocity data was separated into three groups, based on the relative degree of induration, the degree of saturation, and the composition of the materials present. The relatively loose, unconsolidated, unsaturated surficial materials had seismic velocities of 1,200 to 1,600 feet per second. Seismic velocities in this range are consistent with a variety of unsaturated sediments. These unsaturated materials, interpreted to be stream terrace deposits, were between 10 to 4 feet thick: thickest in the southwestern portion of the runway, where the water table is deepest, and gradually thinning toward the northeast.

Beneath the unsaturated materials was a layer characterized by intermediate seismic velocities of 4,850 to 4,900 feet per second. Seismic velocities in this range would be characteristic of saturated or clay-rich materials. This zone was interpreted to be saturated stream terrace deposits and glaciolacustrine sediments. These materials were interpreted as continuing to bedrock.

Beneath the zone of intermediate seismic velocities was a zone with seismic velocities approximately between 12,500 to 13,200 feet per second. This zone was interpreted to be bedrock. Seismic velocities in this range are consistent with those for sound sandstone or shale. These materials were not found to be of a defined thickness, that is, there was no additional underlying rock layer noted within the depth range of the seismic energy wave.

The bedrock surface, as interpreted from the seismic refraction profile, is approximately 277 feet deep in the southwest end area of the runway. The bedrock surface rises to a depth of approximately 135 feet within the first 3,000 feet from the southwest end area of the runway. Over the course of the next 4,190 feet of the seismic profile, the bedrock surface rises to a depth of 81 feet below the ground surface. The bedrock surface interpreted from these data is consistent with bedrock elevation data interpolated from test boring and production well logs for the East Hartford area.



There was no indication of a weathered or highly fractured zone in the upper portion of the bedrock. In addition, because of the range of seismic velocities observed, it was not possible to determine whether a zone of glacial till or stratified drift was present beneath the glaciolacustrine sediments.

#### 3.2 Electromagnetic Terrain Conductivity Survey

EM surveys were conducted along eleven transects in the Airport/Klondike Area on December 4 through 7, 1989. During the survey, terrain conductivity measurements were recorded every 100 feet along the established survey lines. Also, measurements were continuously monitored so that conductivity anomalies could be identified. The location of the terrain conductivity surveys is shown on Drawing TM8-2.

The first terrain conductivity survey was conducted along the airport runway, along the same transect used for the seismic refraction survey. During the survey, a number of anomalies were recorded. With the exception of three, all of these anomalies were associated with subsurface conduits having surface expressions or being otherwise traceable. The three remaining anomalies were thought to be due to conduits, possibly drain pipes, which lacked surface expressions or could not otherwise be traced.

Two terrain conductivity survey lines were conducted in the North Klondike fill piles. Three conductivity anomalies were recorded from known sources, including two buried conduits and surficial steel drums. An additional oval-shaped anomaly, approximately 11 by 25 feet, was also noted to the west of the profile lines.

Two terrain conductivity surveys were performed in Fire Training Area "B" at the southern end of the airport. Several anomalies were reported from this area. One was reported to have been caused by a portion of steel drum partially buried in the soil. Three additional anomalies were reported to probably have been caused by a "tar-like substance" located on the surface.

One terrain conductivity survey was conducted west of the Virgin Product Storage Area (VPSA). Two anomalies were reported from this area. One anomaly was reported from west of Storage Area 2. The other was reported from near the southern end of the profile line, across from the McIlvane Property. No visible cause for these anomalies was reported.

Two terrain conductivity surveys were conducted near the northwest corner of the Klondike Area. The conductivity anomalies detected in this area were reported to probably have been caused by the pavement in the area, or a sewer line which crosses the area.

Two terrain conductivity surveys were performed in the Contractor Storage Area. South of Contractors Road, the terrain conductivity values were typical of background. North of Contractors Road, the conductivity values were considerably higher. These elevated measurements were considered possibly to have been caused by the presence of road salt from snow removal activities. The presence of salt could increase the conductivity of the soil moisture in this area.

One terrain conductivity survey was performed in the vicinity of the former Maintenance Building in the X-401 Area of the North Klondike Area. One anomaly, probably due to the building's septic system, was reported from this area.

In addition to the terrain conductivity profile lines, random surveys of various areas were conducted in the Klondike Area. An isolated conductivity anomaly was reported from east of the former X-412 Test Stand area. No possible cause of this anomaly was reported. Other scattered conductivity anomalies detected in the Klondike Area appear to have been associated with various underground piping or crushed steel drums, metals pans and other metal items associated with the fire training exercises conducted in Fire Training Area A.

#### 3.3 Ground Penetrating Radar Survey

#### 3.3.1 South Klondike Area

å

A GPR survey was conducted in the South Klondike Area on May 24 through 26, 1993, to determine the geometry of the upper surface of the glaciolacustrine sediments, typically referred to as clay, in the area and to provide information regarding the presence of septic systems in the area of the Cryogenics Building. A total of nineteen transects were performed with survey stations established every twenty-five feet for horizontal and vertical control.

Based on a combination of ground truthing and the GPR results, the elevation of the upper surface of the glaciolacustrine sediments was established southward from the Cryogenics Building to the southern end of the Virgin Products Storage Area (VPSA). Based upon the interpreted GPR signal transmission times, the depth to the clay surface ranges from approximately 10 to 18 feet below grade. As illustrated on Drawing TM8-3, the general surface of the clay ranges from an elevation of approximately 35 feet above mean sea level (MSL) in the area of the Cryogenics Building, to approximately 28 feet MSL at the southern end of the VPSA. The clay surface generally slopes from east to west-southwest, with slight surface undulations in the area of monitoring well SK-MW-14I.



Based on the GPR profiles, septic systems were located near the Cryogenic Building in the South Klondike Area. The locations of these septic systems are shown on Drawing TM8-3.

#### 3.3.2 Former Army Barracks Septic Systems

A total of sixteen GPR transects were performed in the North Airport Area on August 6, 1996, to determine the presence and location of septic systems associated with the former Army Barracks. The location of the GPR transects is illustrated on Drawing TM8-4. In general, the location of the former septic system tanks and associated piping were located based on the interpretation of the GPR signals. In addition, "cell" structures, apparently related to the former septic systems were also located. Based upon an interpretation of the GPR signals, these cell structures appear to be composed of columns of undisturbed native materials separated by areas of homogenous fill material.

Possible former septic system tanks associated with the former 150-man and 100-man latrines, former supply and administration building, and former operations building, were located. Cell structures associated with the former septic systems of the 100-man and 150-man latrines, former supply and administration building, and the former leach fields associated with the 100-man and 160-man latrines were located. Various potential pipes were located throughout the area surveyed.

#### 3.3.3 Tie-Down Area

A GPR survey was conducted in the Tie-Down Area in conjunction with a magnetometry survey. A variety of targets, described as "a scattering of miscellaneous objects, some similar to pipes" were interpreted from the GPR survey results. At the location of the magnetic anomaly, discussed below, a "tank-like form" was interpreted, but the structure was reported to have a 4-tiered structure with radar reflectors at depths of approximately 5.5, 7.5, 9.5, and 11.5 feet below grade. The long axis of the reflecting structure was reported to be oriented east-west.

#### 3.3.4 Silver Lane Pickle Company

A total of three individual GRP surveys were conducted in the former Silver Lane pickle Company area. All of the surveys were performed to determine the presence of buried tanks in the area. At the southwestern corner of the area a prominent cylindrical object at a depth of 4 to 5 feet was detected and interpreted to be a large pipe. In the remaining two areas various objects were detected, but not reflections characteristic of a buried tank were interpreted from the results.

The results of magnetic surveying conducted in this area, discussed below, were generally consistent with these interpretations. However, the magnetic survey indicated the possible



presence of buried tank in the northeastern corner of the area. There was no indication of a buried tank in the GPR survey results.

#### 3.3.5 X-312/X-314 Test Stand Area

Approximately 900 lineal feet of GPR survey were conducted in the X-312/X-214 Test Stand Area. GPR signal penetration was reported at a few feet in the western portion of the transect to approximately 8 to 9 feet in the eastern portion. The difference in penetration was interpreted to be due to the presence of buried concrete rubble. A variety of buried radar reflectors were reported. These were interpreted to be due to possible large pipes or other buried debris. No reflections characteristic of buried tanks were noted.

#### 3.3.6 Former Explosives Storage Area

ģ.

A GPR survey consisting of approximately 300 lineal feet of transect was conducted in the former Explosives Storage Area. GPR signal penetration was reported to be approximately 13 feet. No GPR reflectors interpreted as consistent with buried tanks or pipes.

#### 3.3.7 Linde Gas/Chemical Storage Building

A GPR survey consisting of a total of 300 lineal feet of transect was conducted in the Linde Gas/Chemical Storage Building Area on September 6, 1996. GPR signal penetration was reported to be approximately 9 feet. The results of the GPR survey were not reported except for the area surrounding the magnetic anomaly. No recognizable structures were interpreted from the GPR results in the area of the magnetic anomaly.

#### 3.4 Magnetometry Survey

#### 3.4.1 Tie-Down Area

A total of 72 grid node locations on approximately 10 foot intervals were surveyed. The data indicated the presence of various magnetic anomalies consistent with the presence of scattered buried metallic objects and steel-bearing rubble. One magnetic anomaly was interpreted to be consistent with that caused by presence of a buried tank. A GPR survey in the Tie-Down Area indicated the presence of a buried tank-like structure. The reported tank-like structure, as discussed in Section 3.3.3 above, displayed a 4-tiered structure with GRP reflectors at depths of 5.5, 7.5, 9.5, and 11.5 feet below grade, oriented east-west. No final interpretation of the structure was reported.



#### 3.4.2 X-312/X-314 Test Stand Area

A total of 30 magnetic readings on an approximate 10-foot spacing were recorded from the X-312/X-314 Test Stand Area. The results were interpreted to indicate the presence of a "scattering of steel objects at the surface and buried." The report indicated that steel-bearing building rubble was visible on the ground surface in this area. There were no magnetic anomalies consistent with the presence of a buried tank noted in this area.

#### 3.4.3 Silver Lane Pickle Company

The three area previously discussed under GPR survey results were also surveyed magnetically. The magnetic surveying results indicated a magnetic anomaly in the area of the southwestern corner of the area, consistent with a large pipe at a depth of 4 to 5 feet, and the possible presence of a buried tank in the northeastern corner of the area. GPR survey data did not indicate the presence of a buried tank, however.

An additional magnetic survey was conducted along the soil piles located in this area. No significant magnetic anomalies were noted during this survey.

#### 3.4.4 Linde Gas/Chemical Storage Building

A total of 108 magnetic readings on an approximate 10-foot spacing were recorded from the Linde Gas/Chemical Storage Building area. The majority of the results were interpreted to indicate the presence of a scattering of buried debris, steel-bearing objects, or other structures, some of which were noted as visible on the surface. One anomaly, located near the former building footprint, was unexplained. A GPR survey in the area failed to detect any buried objects or other cause for the anomaly.



#### REFERENCES

Fuss & O'Neill, Inc., July 1993, Ground Penetrating Radar Survey, Klondike Area, Pratt & Whitney East Hartford Facility. East Hartford, Connecticut, prepared for Pratt & Whitney

Kick Geoexploration, 1996, Ground Penetrating Radar and Magnetic Surveys, Rentschler Airport, Pratt & Whitney, East Hartford, Connecticut, prepared for Loureiro Engineering Associates. (Klondike Area)

Kick Geoexploration, 1996, Ground Penetrating Radar and Magnetic Survey, Rentschler Airport, Pratt & Whitney, East Hartford, Connecticut, prepared for Loureiro Engineering Associates. (Former Silver Lane Pickle Company)

Kick Geoexploration, 1996, Ground Penetrating Radar Survey, Rentschler Airport, Pratt & Whitney, East Hartford, Connecticut, prepared for Loureiro Engineering Associates. (Former Army Barracks)

Westinghouse Environmental and Geotechnical Services, Inc. January 1990, Report of EM-31 Survey, United Technologies, East Hartford Facility, East Hartford, Connecticut, Pratt & Whitney, East Hartford, Connecticut, unpublished report for Pratt & Whitney.

Westinghouse Environmental and Geotechnical Services, Inc. 1990, *Preliminary Reconnaissance Survey of the Klondike Area*, Pratt & Whitney, East Hartford, Connecticut, unpublished report for Pratt & Whitney.

Weston Geophysical, January 1990, Seismic Refraction Survey, United Technologies Pratt & Whitney Site, East Hartford, Connecticut, prepared for Westinghouse Environmental and Geotechnical Services.

**DRAWINGS** 

| Facility Name: <u>PRATT &amp;</u> | WHITNEY - MAIN STREET                                                     |
|-----------------------------------|---------------------------------------------------------------------------|
| Facility ID#: <u>CTD99067</u>     | 2081                                                                      |
| Phase Classification: <u>R-5</u>  |                                                                           |
| Purpose of Target Sheet:          |                                                                           |
| [X] Oversized (in Site File)      | Oversized (in Map Drawer)                                                 |
| [ ] Page(s) Missing (Ple          | ease Specify Below)                                                       |
| [ ] Privileged                    | [ ] Other (Provide<br>Purpose Below)                                      |
|                                   | Material, if applicable:  SMIC REFRACTION SURVEY, T, LOCATION AND SECTION |
| [X] Map [] Photo                  | ograph [ ] Other (Specify Below)                                          |
|                                   | · · · · · · · · · · · · · · · · · · ·                                     |

<sup>\*</sup> Please Contact the EPA New England RCRA Records Center to View This Document \*

| HITNEY - MAIN STREET                                            |
|-----------------------------------------------------------------|
|                                                                 |
| 81                                                              |
|                                                                 |
|                                                                 |
| [ ] Oversized (in Map Drawer)                                   |
| e Specify Below)                                                |
| Other (Provide Purpose Below)                                   |
| aterial, if applicable:  AIN CONDUCTIVITY DATA,  , LOCATION MAP |
| raph [ ] Other (Specify Below)                                  |
|                                                                 |

<sup>\*</sup> Please Contact the EPA New England RCRA Records Center to View This Document \*

| Facility Name: PRATT & W Facility ID#: CTD99067209 Phase Classification: R-5 Purpose of Target Sheet: |                                |
|-------------------------------------------------------------------------------------------------------|--------------------------------|
| Phase Classification: R-5                                                                             | 81                             |
|                                                                                                       |                                |
| Purpose of Target Sheet:                                                                              |                                |
|                                                                                                       |                                |
| [X] Oversized (in Site File)                                                                          | [ ] Oversized (in Map Drawer)  |
| [ ] Page(s) Missing (Please                                                                           | e Specify Below)               |
| [ ] Privileged                                                                                        | Other (Provide Purpose Below)  |
| Description of Oversized Ma  DRAWING TM8-3: GROU  SOUTH KLONDIKE AREA                                 | ND AND CLAY CONTOURS,          |
| [X] Map [] Photogr                                                                                    | caph [ ] Other (Specify Below) |

<sup>\*</sup> Please Contact the EPA New England RCRA Records Center to View This Document \*  $\,$ 

| Facility Name: <u>PRATT &amp; W</u>                                | VHITNEV - MAIN STREET                           |                          |
|--------------------------------------------------------------------|-------------------------------------------------|--------------------------|
|                                                                    | Facility Name: PRATT & WHITNEY - MAIN STREET    |                          |
| Facility ID#: <u>CTD990672081</u> Phase Classification: <u>R-5</u> |                                                 |                          |
|                                                                    |                                                 | Purpose of Target Sheet: |
| [X] Oversized (in Site File)                                       | [ ] Oversized (in Map Drawer)                   |                          |
| [ ] Page(s) Missing (Pleas                                         | se Specify Below)                               |                          |
| [ ] Privileged                                                     | Other (Provide Purpose Below)                   |                          |
| Description of Oversized Ma  DRAWING TM8-4: GPR S  LOCATION MAP    | aterial, if applicable: SURVEYS, NORTH AIRPORT, |                          |
| [X] Map [] Photogr                                                 | raph [ ] Other (Specify Below)                  |                          |

<sup>\*</sup> Please Contact the EPA New England RCRA Records Center to View This Document \*  $\,$